跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 05:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱昭諭
研究生(外文):Jau-Yu Chiou
論文名稱:醋酸纖維酯複合膜材之支撐層結構設計與滲透蒸發效能研究
論文名稱(外文):Study on the sub-layer design and pervaporation performance of cellulose-based composite membrane
指導教授:李魁然賴君義賴君義引用關係
指導教授(外文):Kueir-Rarn LeeJuin-Yih Lai
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:結構設計滲透蒸發複合膜材醋酸纖維酯
外文關鍵詞:structure designCellulose acetatePervaporationComposite membrane
相關次數:
  • 被引用被引用:1
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功製備出應用於滲透蒸發分離程序的幾丁聚醣/醋酸纖維酯/不織布複合薄膜。文中探討高分子濃度於基材薄膜結構影響,經由黏度計的量測,了解鑄膜液之性質,藉由與非溶劑接觸時,薄膜光穿透度值的改變,判斷薄膜成膜速率快慢,以及掃描式電子顯微鏡觀察薄膜結構型態。並且利用滲透蒸發程序對基材薄膜與複合薄膜之分離效能進行探討。所製備的複合膜材對異丙醇水溶液系統,擁有優越的滲透蒸發分離效能;當複合膜材係以1.5 wt% 幾丁聚醣溶液塗佈於9 wt%醋酸纖維酯基材薄膜,而進料為70 wt%異丙醇的水溶液,操作溫度為70℃時,其透過通量為8300 g/m2h,透過水含量可達99 wt%以上。
藉由弱非溶劑---乙醇為凝聚劑,將可製備表面多孔且整體連通之基材薄膜,但礙於薄膜固化速率過於緩慢,不利於實際應用,而利用雙凝聚槽法則可達快速製備表面多孔且整體連通之基材薄膜。經由3wt% 幾丁聚醣溶液塗佈於此多孔基材薄膜上,進行進料為70 wt%異丙醇的水溶液,操作溫度為70℃滲透蒸發操作時,透過通量為7570 g/m2h,透過水含量達99 wt%以上。
Membranes with high separation performance are fascinated for lots researchers in the field of pervaporation. In this study, Chitosan(CS)/Cellulose Acetate(CA)composite membrane was fabricated to investigate the effect of CA substrate structure on dehydration performance of aqueous isopropanol(IPA) mixtures. The CA substrate membranes were prepared by various concentration of CA polymer solution. The Scanning electron microscopy (SEM) observation, light transmittance experiment and rheometer measurement results showed that a membrane with denser sublayer and thicker top layer can be formed for higher polymer concentration. The optimum pervaporation performances for 70wt% IPA/H2O mixtures through 9wt% CA polymer solution cast CS/CA composite membrane are 8,300 g/m2h and 99 wt% for permeation rate and water content in permeate, respectively.
By immersing cellulose acetate casting film in ethanol coagulant bath, we could prepare membranes with lacy structure. However, the delay solidification rate, which made the useless in continuous membranes preparation for this system. In the dual-coagulant baths system, we could also prepare membranes with lacy structure and fast solidification, which using alcohol and water were used as the 1st and 2nd coagulant, respectively. The chitosan/cellulose acetate/ non-woven composite membrane made by coating 3wt% chitosan solution on the substrate with lacy structure, had nice pervaporation performances for 70wt% IPA/H2O mixtures at 70℃. The flux and water concentration in permeate are 7570 g/m2h and 99 wt%, respectively.
目錄

中文摘要--------------------------------------------------------------------- Ⅰ
英文摘要--------------------------------------------------------------------- Ⅱ
致謝--------------------------------------------------------------------------- Ⅳ
目錄--------------------------------------------------------------------------- Ⅴ
圖索引------------------------------------------------------------------------ Ⅶ
表索引------------------------------------------------------------------------ Ⅹ

第一章 序論 1
1-1 薄膜之優勢---------------------------------------------------- 1
1-2薄膜的定義----------------------------------------------------- 3
1-3薄膜分離技術----------------------------------------------- 5
1-4薄膜製備及形態-------------------------------------------- 7
1-5成膜理論之介紹----------------------------------------------- 8
1-5-1熱力學---------------------------------------------------- 8
1-5-2質傳動力學---------------------------------------------- 10
1-6複合膜製備----------------------------------------------------- 11
1-6-1基材膜之製備方式------------------------------------- 11
1-6-2緻密層之製備方式------------------------------------- 12
1-7滲透蒸發分離程序-------------------------------------------- 13
1-8幾丁質與幾丁聚醣-------------------------------------------- 15
1-8-1幾丁質---------------------------------------------------- 15
1-8-2 幾丁聚醣------------------------------------------------ 16
1-9 醋酸纖維酯---------------------------------------------------- 17
1-10 文獻回顧----------------------------------------------------- 18
1-10-1 滲透蒸發史------------------------------------------- 18
1-10-2幾丁聚醣複合膜之滲透蒸發研究----------- 19
1-11 研究動機----------------------------------------------------- 23
1-12 研究目的----------------------------------------------------- 24

第二章 實驗----------------------------------------------------------------- 25
2-1 實驗藥品------------------------------------------------------- 25
2-2 實驗儀器------------------------------------------------------- 26
2-3 實驗步驟------------------------------------------------------- 27
2-3-1 鑄膜液配製--------------------------------------------- 27
2-3-2 平板基材膜之製備------------------------------------ 27
2-3-3 鑄膜液黏度量測--------------------------------------- 28
2-3-4 光穿透實驗--------------------------------------------- 28
2-3-5 複合膜之製備------------------------------------------ 30
2-3-6 薄膜結構分析------------------------------------------ 30
2-3-7 滲透蒸發分離操作------------------------------------ 30

第三章 幾丁聚醣/醋酸纖維酯/不織布複合薄膜--------------------- 33
3-1 乾式與濕式醋酸纖維薄膜對滲透蒸發效能之影響---- 33
3-2 高分子濃度變化對薄膜結構之影響---------------------- 35
3-3 醋酸纖維薄膜於滲透蒸發效能---------------------------- 42
3-4 幾丁聚醣/醋酸纖維酯複合膜之滲透蒸發效能--------- 44

第四章 多孔連通無皮層之基材薄膜製備----------------------------- 49
4-1 醇類凝聚劑對成膜結構之影響---------------------------- 50
4-2 不同高分子濃度於乙醇槽之結構變化------------------- 51
4-3 乙醇槽浸置時間對結構的影響---------------------------- 54
4-4 不同濃度醇類水溶液為凝聚劑---------------------------- 59
4-5 幾丁聚醣/多孔醋酸纖維酯複合膜之滲透蒸發效能--- 62

第五章 結論----------------------------------------------------------------- 67

參考文獻--------------------------------------------------------------------- 69
作者自述---------------------------------------------------------------------


圖索引

Fig.1-1 The development of membrane technology and its market.------------------------------------------------ 2
Fig. 1-2 Schematic representation of membrane cross-sections.---- 4
Fig. 1-3 Schematic representation of the nominal pore size and best theoretical model for the principal membrane separation processes. ----------------------------------- 6
Fig.1-4 Schematic representation of a ternary phase diagram of polymer/solvent/ nonsolvent. CP, critical point; (B) Berghmans point. --------------- 9
Fig. 1-5 Polymer rich phase (black) and polymer lean phase (white). (I, VI)Dense structure; (II)Sponge structure; (III)Bi-continuous or lacy structure; (IV)Nodules.------------------------------------------ 9
Fig. 1-6 Schematic representation of different coagulation path. -------------------------------------------------- 10
Fig. 1-7 Schematic diagram of GFT composite membrane. ------ 11
Fig. 1-8 The principle of pervaporation. ------------------------- 14
Fig. 1-9 Chemical structure of chitin and chitosan. --------------- 16
Fig. 1-10 Chemical structures of cellulose acetate. ---------------- 17
Fig. 2-1 Schematic diagram of membrane preparation by dual coagulant method. -------------------------------------- 28
Fig. 2-2 Measurement of the light transmission intensity during an immersion–precipitation process: (1) light source and lenses, (2) glass plate, (3) casting film, (4) detector, (5) light intensity transducer; (6) computer, (7) coagulation bath. --------------------------------------------------- 29
Fig. 2-3 Schematic diagram of pervaporation apparatus. --------- 32
Fig. 3-1 The cross-section SEM image of 15 wt% CA membrane by different preparation method. X 500 (a) Dry phase separation. (b) Wet phase separation.------------------------- 33
Fig. 3-2 Effect of cellulose acetate concentration on membrane cross-section morphology. X 500----------------------------- 36
Fig. 3-3 Effect of cellulose acetate concentration on membrane cross-section morphology. X 10k ----------------------- 37
Fig. 3-4 Effect of cellulose acetate content on viscosity of polymer solution at 25℃. ------------------------------ 39
Fig. 3-5 Light transmission of cellulose acetate membrane, which immersed in water bath at 25℃.------------------------------ 40
Fig. 3-6 The AFM image of different concentration cellulose acetate membrane surface. ------------------------------ 41
Fig. 3-7 The pervaporation performance of 70 wt% aqueous IPA solution at 70℃ through cellulose acetate membrane.----- 43
Fig. 3-8 Effect of the CA concentration to prepare the porous substrate on the thickness of the selective chitosan layer. Casting thickness: 100μm. X 10k. ---------------- 46
Fig. 3-9 The total flux and water concentration in permeate through different concentration cellulose acetate membrane in 70/30 IPA/H2O mixture at 25℃.-------------- 47
Fig. 3-10 The total flux and water concentration in permeate through different concentration cellulose acetate membrane in 70/30 IPA/H2O mixture at 70℃.-------------- 47
Fig. 3-11 The total flux and water concentration in permeate through different concentration cellulose acetate membrane in 90/10 EtOH/H2O mixture at 70℃.----------- 48
Fig. 4-1 The morphology of cellulose acetate membrane prepared by immersing CA(12wt%) /NMP nascent membrane into ethanol coagulant. (a) surface x 5k, (b) cross-section x 1k. ----------------------------------------------------- 50
Fig. 4-2 The cross-section morphology of cellulose acetate membrane prepared by immersing different concentration CA/NMP nascent membranes into ethanol coagulant. x 1k. ---------------------------------------- 52
Fig. 4-3 The surface morphology of cellulose acetate membrane prepared by immersing different concentration CA/NMP nascent membranes into ethanol coagulant. x 5k. -------- 53
Fig. 4-4 Light transmission of 12 wt% cellulose acetate casting film, which immersed in ethanol bath at 25℃.------------- 55
Fig. 4-5 The cross-section morphology of cellulose acetate membrane, which prepared by immersing 12wt% CA/NMP nascent membranes into ethanol coagulant for various time. x 5k. ------------------------------------- 57
Fig. 4-6 The surface morphology of cellulose acetate membrane, which prepared by immersing 12wt% CA/NMP nascent membranes into ethanol coagulant for various time. x 5k. --------------------------------------------------------- 58
Fig. 4-7 The morphology of cellulose acetate membrane prepared by immersing CA(12wt%) /NMP nascent membrane into different concentration ethanol/water mixtures. Cross-section x 1k, Surface x 10 k.--------------------------- 61
Fig. 4-8 The cross-section morphology of different concentration chitosan coating on porous cellulose acetate membranes. x 5k.--------------------------------------------------------------- 64
Fig. 4-9 The surface morphology of different concentration chitosan coating on porous cellulose acetate membranes. x 5k---------------------------------------------------- 65
Fig. 4-10 The cross-section morphology and EDX mapping of different concentration chitosan coating on cellulose acetate membranes. (a),(b) 1.5wt% CS/non-porous surface, (c),(d) 3wt% CS/porous surface. --------------- 66


表索引

Table 1-1 Driving forces and the two-phase systems separated by membranes for different membrane processes.------------- 6
Table 3-1 The pervaporation performance of cellulose acetate membrane.------------------------------------------------------- 34
Table 3-2 Surface roughness values of the cellulose acetate membrane prepared with different polymer concentration.---------------------------------------------------- 40
Table 4-1 Solubility parameter of each component.-------------------- 49
Table 4-2 Some physical properties of different concentration ethanol/water mixtures.---------------------------------------- 60
Table 4-3 The pervaporation performances of IPA/H2O mixtures for chitosan coating on porous/non-porous substrate composite membranes.----------------------------------------- 63
參考文獻
1.M. H. V. Mulder, “Basic principles of membrane technology”, Kluwer Academic Publishers, The Netherlands, (1997).
2.Suan Hanf, Membrane Technology:A New Era, Business Communications Company Inc, (2001).
3.S. P. Nunes, K. V. Peinemann, “Membrane technology in the chemical industry”, Wiley, Germany, (2003).
4.U. S. Toti, T. M. Aminabhavi, “Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water + acetic acid and water + isopropanol mixtures”, J. Membrane Sci., 228 (2004) 199-208.
5.M. Y. Teng, K. R. Lee, S. C. Fan, T. T. Wu, J. Y. Lai, “Development of aromatic polyamide membrane for pervaporation and vapor permeation”, J. Membr. Sci., 164 (2000) 241-249.
6.H. A. Tsai, S. C. Chen, W. L. Chou, K. R. Lee, M. C. Yang, J. Y. Lai,” Pervaporation of water/alcohol mixtures through chitosan/cellulose acetate composite hollow fiber membranes” J. Appl. Polym. Sci., 94 (2004) 1562-1568.
7.D. M. Wang, F. C. Lin, T. T Wu, J. Y. Lai, “Pervaporation of water-ethanol mixtures symmetric and asymmetric TPX membranes”, J. Membrane Sci., 123 (1997) 35-46.
8.B. Smith, S. Sridhar, A. A. Khan, “Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells”, Macromolecules, 37 (2004) 2233-2239.
9.S. Loeb, S. Sourirajan, “Sea water demineralization by means of an osmotic membrane”, Adv. Chem. Ser., 38, 117 (1962).
10.李魁然, ”滲透蒸發薄膜研究-成膜與改質”, 中原大學博士論文, (1993).
11.Richard W. Baker, “Membrane Technology and Application”, Wiley, (2003).
12.H. Strathmann and K. Kock, “The formation mechanism of phase inversion membrane”, Desalination 21(1977) 214-255.
13.R. M. Boom, T. V. Boomgaard and C. A. Smolders, Mass transfer and thermodynamics during immersion precipitation for two-polymer system:Evaluation with the system PES-PVP-NMP-water, J. Membrane Sci., 90 (1994) 231.
14.F. W. Altena and C. A. Smolders, Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent, Macromolecules, 15(1982) 1491.
15.J. K. Kim, Y. D. Kim, T. Kanamori, H. K. Lee and K. J. Balk, Vitrification phenomena in polysulfone/NMP/water system, J. Appl. Polym. Sci., 71(1999) 431.
16.高瑟聰, ”幾丁聚醣/聚丙烯腈/不織布複合膜之製備及其滲透蒸發效能之評估”, 國立台灣大學化學工學研究所碩士論文, (2003)
17.D. M. Wang, F. C. Lin, T. T. Wu, J. Y. Lai, "Formation Mechanism of the Macrovoids Induced by Surfactant Additives", J. Membr. Sci., 142 (1998) 191-204.
18.W. J. Ward, Ⅲ, W. R. Browall, and R. M. Salemme, “Ultrathin Silicone Rubber Membranes for Gas Separations”, J. Membrane Sci., 1, (1976) 99.
19.M. Y. Teng, K. R. Lee, D. J. Liaw, Y. S. Lin, and J. Y. Lai, "Plasma deposition of acrylamide onto novel aromatic polyamide membrane for pervaporation", Eur. Polym. J., 36 (2000) 663-672.
20.H. Wang, X. Lin, K. Tanaka, H. Kita, K. I. Okamoto, “Preparation of plasma-grafted polymer membranes and their morphology and pervaporation properties toward benzene/cyclohexane mixtures”, J. Polym. Sci., Part A: Polym. Chem., 36 (1998) 2247-2259.
21.J. Neel, in: R.Y.M. Huang (Ed.), Introduction to Pervaporation, Pervaporation Membrane Separation Processes, Elsevier, Amsterdam, (1991).
22.X. Feng, R.Y.M. Huang, Liquid separation by membrane pervaporation: a review, Ind. Eng. Chem. Res. 36 (1997) 1048–1066.
23.P. Shao, R.Y.M. Huang, “Polymeric membrane pervaporation”, J. Membr. Sci., 287 (2007) 162-179..
24.許昭仁, “界面聚合法製備聚醯胺/聚丙烯腈複合薄膜應用於滲透蒸發分離程序之研究”, 中原大學碩士論文, (2006).
25.J. G. Wijmans, R. W. Baker, “The Solution-diffusion model: a review”, J. Membr. Sci., 107 (1995) 1-21.
26.V. Dubey, L. K. Pandey, C. Saxena, “Pervaporative separation of ethanol/water azeotrope using a novel chitosan-impregnated bacterial cellulose membrane and chitosan-poly(vinyl alcohol) blends”, J. Membr. Sci., 251 (2005) 131-136.
27.I. F. J. Vankelecom, B. Moermans, G. Verschueren, P.A. Jacobs, “Intrusion of PDMS top layers in porous supports”, J. Membr. Sci., 158 (1999) 289-297.
28.B. Smitha, D. Suhanya, S. Sridhar, M. Ramakrishna, “Separation of organic-organic mixtures by pervaporation-a review”, J. Membr. Sci., 241 (2004) 1-21.
29.R.C. Binning, and R.J. Lee, “Separation of Azeotropic Mixture”, U.S. Patent, 2, 953, 520 September 20, (1960).
30.R.C. Binning, R.J. Lee, J.F. Jennings, and E.C. Martin, “Separation of Liquid Mixture by Permeation”, Ind. Eng. Chem., 53, (1961)45.
31.R. Y. M. Huang, Pervaporation membrane separation process, Elsevier Science Publishers B. V. (1991).
32. W. Won, X. Feng, D. Lawless, “Separation of dimethyl carbonate/methanol/water mixtures by pervaporation using crosslinked chitosan membranes” Sep. Purif. Technol., 31 (2003) 129-140.
33. M. D. Kurkuri, T. M. Aminabhavi, “Polyacrylonitrile-g-poly(vinyl alcohol) membranes for the pervaporation separation of dimethyl formamide and water mixtures”, J. Appl. Polym. Sci., 31 (2004) 4091-4097.
34. A. L. Buyanov, L. G. Revelskaya, E. Yu. Rosova, G. K. Elyashevich, “Swelling behavior and pervaporation properties of new composite membrane systems: porous polyethylene film- poly(acrylic acid) hydrogel”, J. Appl. Polym. Sci., 94 (2004) 1461-1465.
35.N. W. Oh, J. Jegal, and K. H. Lee, “Preparation and Characterization of Nanofiltration Composite Membranes Using Polyacrylonitrile (PAN). 1. Preparation and Modification of PAN Supports”. J. Appl. Poly. Sci., 80, (2001) 1854.
36.X. Feng, and R. Y. M. Huang, “Pervaporation with Chitosan Membranes. I. Separation of Water from Ethylene Glycol by a Chitosan/Polysulfone Composite Membrane”, J. Membrane Sci., 116, (1996) 67.
37.M. Ghazali M. Nawawi, and R. Y. M. Huang, “Pervaporation Dehydration of Isopropanol with Chitosan Membranes”, J. Membrane Sci., 124, (1997) 53.
38.R. Y. M. Huang, R. Pal, and G. Y. Moon, “Crosslinked Chitosan Composite Membrane for the Pervaporation Tehydration of Alcohol Mixtures and Enhancement of Structural Stability of Chitosan/Polysulfone Composite Membranes”, J. Membrane Sci., 160, (1999) 17.
39.J.N. Shen, L.G. Wu, J.H. Qiu and C.J. Gao, “Pervaporation separation of water/isopropanol mixtures through crosslinked carboxymethyl chitosan/polysulfone hollow-fiber composite membranes.” J. Appl. Polym. Sci., 103, (2007) 1959-1965.
40.M. C. Yang, and J. H. Tong, “Loose Ultrafiltration of Proteins Using Hydrolyzed Polyacrylonitrile Hollow Fiber”, J. Membrane Sci., 132, (1997) 63.
41.X. P. Wang, Z. Q. Shen, F. Y. Zhang, and Y. F. Zhang, “A Novel Composite Chitosan Membrane for the Separation of Alcohol-water Mixtures”, J. Membrane Sci., 119, (1997) 191.
42.B.B. Li, Z.L. Xu, F.A. Qusay and R. Li, “Chitosan-poly (vinyl alcohol)/poly (acrylonitrile) (CS-PVA/PAN) composite pervaporation membranes for the separation of ethanol-water solutions”, Desalination, 193, (2006)171-181.
43.R.Y.M. Huang, R. Pal, G.Y. Moon, “Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane”, J. Membrane Sci., 167, (2000) 275-289.
44.D. A. Devi, B. Smitha, S. Sridhar, T.M. Aminabhavi, “Novel crosslinked chitosan/poly(vinylpyrrolidone) blend membranes for dehydrating tetrahydrofuran by the pervaporation technique”, J. Membrane Sci., 280, (2006) 45-53.
45.Y.L. Liu, C.H. Yu, K.R. Lee, J.Y. Lai, “Chitosan/poly(tetrafluoroethylene) composite membranes using in pervaporation dehydration processes” J. Membrane Sci., 287, (2007) 230-236.
46.H.A. Tsai, H.C. Chen, W.L. Chou, K.R. Lee, M.C. Yang, J.Y. Lai, “Pervaporation of water/alcohol mixtures through chitosan cellulose acetate composite hollow-fiber membranes” J. Appl. Polym. Sci. 94, (2004) 1562-1568.
47.S.C. Fan, Y.C. Wang, C.L. Li, K.R. Lee, D.J. Liaw, H.P. Huang, J.Y. Lai, “Effect of coagulation media on membrane formation and vapor permeation performance of novel aromatic polyamide membrane”, J. Membrane Sci., 204, (2002) 67-79.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top