跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 15:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳季妙
研究生(外文):Chi-Miao Chen
論文名稱:離子液體吸收二氧化碳之熱物性質量測研究
論文名稱(外文):The measurements of the thermophysical properties of carbon dioxide absorption into ionic liquids.
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:168
中文關鍵詞:黏度密度溶解度二氧化碳離子液體
外文關鍵詞:densitycarbon dioxideviscositysolubilitiesionic liquids
相關次數:
  • 被引用被引用:1
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用Thermo Cahn D-110微量天平量測溫度範圍303.15~343.15 K及壓力範圍1 ~ 60 bar之二氧化碳氣體對離子溶液的溶解度。本實驗所量測離子液體濃度範圍為(98 ~ 99 %),所量測的離子液體系統為[Bmim][PF6] 99 wt% (1-Butyl-3-methylimidazolium hexafluorophosphate, 1-丁基-3-甲基引咪六氟磷酸, CAS no. 174501-64-5), [Bmim][BF4] 99 wt% (1-n-Butyl-3-methylimidazolium tetrafluoroborate, 1-正丁基-3-甲基引咪四氟溴酸, CAS no. 174501-65-6 ), [Bmim][MeSO4] 98 wt% (1-Butyl-3-methylimidazolium methanesulfonate, 1-丁基-3-甲基引咪-甲基磺酸, CAS no. 401788-98-5 ),[Bmim][CF3SO3] 98.1 wt% (1-butyl-3-methylimidazolium Trifluoromethanesulfonate, 1-丁基-3-甲基引咪- 三氟甲基磺酸, CAS no. 174899-66-2)。
本研究所量測二氧化碳對離子液體的溶解度其標準偏差值為 1.94%。從量測出的結果可知二氧化碳對離子液體的溶解度會隨著溫度上升而下降,隨著二氧化碳壓力的增加而增加,量測結果利用Huang et al., 1985 提出高準確度的二氧化碳EOS來計算高壓二氧化碳的密度及Shiflett and Yokozeki, 2005提出的浮力計算方法來推算被吸收二氧化碳於離子液體中的溶解度。
在環境保護意識高漲的21世紀,工商業高度發展造成的溫室效應及全球暖化之議題,逐漸受世人所重視,離子液體因其低揮發性、低熔點、不易燃、可回收等突出之特點,逐漸取代傳統易燃、揮發性高、具毒性、侵害環境之有機溶劑,因此離子液體被大量應用於電化學、反應介質及催化劑,希望能利用離子液體獨特的優點,發展出低耗能、效率高的二氧化碳吸收程序。
本研究所採用四種離子液體,除[Bmim][PF6]及[Bmim][BF4]外,其餘兩項藥品於文獻上尚未有其溶解度的數值,故期望本研究結果能提供相關數值,以期日後於相關研究領域能具參考價值。
In 21st century, the environmental issues have become more important than ever. Because of the low vapor pressure, low melting point, not flammable and could be recycled, the ionic liquids replaced the organic solvents gradually.
Gaseous carbon dioxide (CO2) absorption measurements in [Bmim][PF6] 99% (1-Butyl-3-methylimidazolium hexafluorophosphate), [Bmim][BF4] 99% (1-n-Butyl-3-methylimidazolium tetrafluoroborate), [Bmim][MeSO4] 98% (1-Butyl-3-methylimidazolium methanesulfonate) and [Bmim][CF3SO3] 98.1% (1-butyl-3-methylimidazolium Trifluoromethanesulfonate) were made using a commercial gravimetric microbalance at temperatures of 303.15~343.15 K (30~70 oC) and at pressures under 60 bar. Gas solubilities were determined by the weight change of ionic liquids. The AAD% of this study of solubilities would be 1.94% . From this study can find out that the solubilities would be increase with increasing pressure and decrease with increasing temperature. Solubilities are different from ionic liquids with different anions.
Wish that this study may help to develop a process with low energy cost and high efficiency absorption CO2.
目錄
摘要 I
Abstract III
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 XIII
第1章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 研究目的 6
第2章 文獻回顧及氣體溶解度 7
2-1 文獻回顧 7
2-1-1 二氧化碳於離子液體中溶解度之數據 7
2-1-2 二氧化碳固定回收的方法 9
2-2 文獻上量測二氧化碳溶解度的方法 15
2-3 離子液體簡介 22
2-3-1 離子液體 (Ionic Liquid) 22
2-3-2 離子液體的命名 23
2-3-3 離子液體物理性質 24
2-3-4 離子液體的應用 26
2-4 溶解度計算模式 29
2-4-1 浮力計算 29
2-4-2 高壓二氧化碳的密度計算 30
2-4-3 二氧化碳溶解度計算 33
第3章 實驗 34
3-1 實驗藥品 34
3-2 實驗裝置 37
3-3 實驗部分 42
3-3-1 量測原理 42
3-3-2 實驗步驟 42
3-3-3 空白實驗 45
3-3-4 微量天平校正 46
3-3-5 純化實驗 46
3-4 實驗步驟及方法確認 47
第4章 結果與討論 48
4-1 離子液體基礎物性量測實驗結果 48
4-1-1 純化後RI量測結果 48
4-1-2 密度量測結果 50
4-1-3 黏度量測結果 62
4-2 空白實驗及各項參數計算結果 74
4-2-1 空白實驗結果 74
4-2-2 高壓離子液體密度計算 81
4-3 溶解度計算結果 84
4-3-1 [Bmim][PF6] 實驗驗證與文獻值比較 85
4-3-2 [Bmim][BF4] 實驗驗證與文獻值比較 105
4-3-3 [Bmim][MeSO4]二氧化碳溶解度結果 122
4-3-4 [Bmim][CF3SO3]二氧化碳溶解度結果 139
4-3-5 二氧化碳吸收量比較 156
第5章 結論 159
符號說明 161
參考文獻 163
自述 168

表目錄
Table 2 1 二氧化碳於離子液體中之溶解度文獻整理 8
Table 2 2 Reduction parameters ( Huang et al., 1985) 31
Table 2 3 Constants ci ( Huang et al., 1985) 32
Table 3 1藥品列表 35
Table 3 2 所使用離子液體結構式 36
Table 4 1 純化結果與文獻比較 49
Table 4 2 [Bmim][PF6] 密度量測,藥品純度及量測方法 50
Table 4 3 [Bmim][PF6] 密度實驗值及文獻值 51
Table 4 4 [Bmim][BF4] 密度量測,藥品純度及方法 53
Table 4 5 [Bmim][BF4] 密度實驗值及文獻值 54
Table 4 6 [Bmim][MeSO4] 密度量測,藥品純度及方法 56
Table 4 7 [Bmim][MeSO4] 密度量測值及實驗值 57
Table 4 8 [Bmim][CF3SO3] 密度量測,藥品純度及方法 59
Table 4 9 [Bmim][CF3SO3] 密度實驗值及文獻值 60
Table 4 10 [Bmim][PF6] 黏度量測,藥品純度及方法 62
Table 4 11 [Bmim][PF6] 黏度量測結果與文獻值 63
Table 4 12 [Bmim][BF4] 黏度量測,藥品純度及方法 65
Table 4 13 [Bmim][BF4] 黏度實驗值及文獻值 66
Table 4 14 [Bmim][MeSO4] 黏度量測,藥品純度及方法 68
Table 4 15 [Bmim][MeSO4] 黏度實驗值及文獻值 69
Table 4 16 [Bmim][CF3SO3] 黏度量測,藥品純度及方法 71
Table 4 17 [Bmim][CF3SO3] 黏度實驗值及文獻值 72
Table 4 18 空白實驗量測重量值 75
Table 4 19 空白實驗壓力對照二氧化碳密度值 76
Table 4 20 稱量盤所受的浮力重 77
Table 4 21 加上浮力後的真實重量 78
Table 4 22 空白實驗回歸數值 79
Table 4 23空白實驗eqn 4-1~4-4參數回歸結果 80
Table 4 24 文獻值與本研究[Bmim][PF6]實驗數值之AAD% 87
Table 4 25 [Bmim][PF6]初始重量(W0+WIL) 88
Table 4 26 [Bmim][PF6]量測重量Wmea 89
Table 4 27 [Bmim][PF6]離子液體重WIL 90
Table 4 28 [Bmim][PF6]空稱量盤重量W0 91
Table 4 29 [Bmim][PF6]高壓二氧化碳密度 92
Table 4 30 [Bmim][PF6]空盤所受浮力Bp 93
Table 4 31 [Bmim][PF6] 高壓離子液體密度 94
Table 4 32 [Bmim][PF6]高壓離子液體體積 95
Table 4 33 [Bmim][PF6]離子液體所受浮力BIL 96
Table 4 34 [Bmim][PF6]真實重量Wact 97
Table 4 35 [Bmim][PF6]吸收二氧化碳重量 98
Table 4 36 [Bmim][PF6]吸收二氧化碳的莫爾分率Xco2 99
Table 4 37 [Bmim][PF6]吸收二氧化碳之w% 100
Table 4 38 回歸出[Bmim][PF6] eqn4-1~4-4之參數值 103
Table 4 39 [Bmim][BF4]初始重量(W0+WIL) 106
Table 4 40 [Bmim][BF4]量測重量Wmea 107
Table 4 41 [Bmim][BF4]離子液體重WIL 108
Table 4 42 [Bmim][BF4]空稱量盤重量W0 109
Table 4 43 [Bmim][BF4]高壓二氧化碳密度 110
Table 4 44 [Bmim][BF4]空盤所受浮力Bp 111
Table 4 45 [Bmim][BF4]高壓離子液體密度 112
Table 4 46 [Bmim][BF4]高壓離子液體體積 113
Table 4 47 [Bmim][BF4]離子液體所受浮力BIL 114
Table 4 48 [Bmim][BF4]真實重量Wact 115
Table 4 49 [Bmim][BF4]吸收二氧化碳重量 116
Table 4 50 [Bmim][BF4]吸收二氧化碳的莫爾分率Xco2 117
Table 4 51 [Bmim][BF4]吸收二氧化碳之w% 118
Table 4 52回歸出[Bmim][BF4] eqn 4-1~4-4之參數值 120
Table 4 53 [Bmim][MeSO4]初始重量(W0+WIL) 123
Table 4 54 [Bmim][MeSO4]量測重量Wmea 124
Table 4 55 [Bmim][MeSO4]離子液體重WIL 125
Table 4 56 [Bmim][MeSO4]空稱量盤重量W0 126
Table 4 57 [Bmim][MeSO4]高壓二氧化碳密度 127
Table 4 58 [Bmim][MeSO4]空盤所受浮力Bp 128
Table 4 59 [Bmim][MeSO4]高壓離子液體密度 129
Table 4 60 [Bmim][MeSO4]高壓離子液體體積 130
Table 4 61 [Bmim][MeSO4]離子液體所受浮力BIL 131
Table 4 62 [Bmim][MeSO4]真實重量Wact 132
Table 4 63 [Bmim][MeSO4]吸收二氧化碳重量 133
Table 4 64 [Bmim][MeSO4]吸收二氧化碳的莫爾分率Xco2 134
Table 4 65 [Bmim][MeSO4]吸收二氧化碳之w% 135
Table 4 66回歸出[Bmim][MeSO4] eqn 4-1~4-4之參數值 137
Table 4 67 [Bmim][CF3SO3]初始重量(W0+WIL) 140
Table 4 68 [Bmim][CF3SO3]量測重量Wmea 141
Table 4 69 [Bmim][CF3SO3]離子液體重WIL 142
Table 4 70 [Bmim][CF3SO3]空稱量盤重量W0 143
Table 4 71 [Bmim][CF3SO3]高壓二氧化碳密度 144
Table 4 72 [Bmim][CF3SO3]空盤所受浮力Bp 145
Table 4 73 [Bmim][CF3SO3]高壓離子液體密度 146
Table 4 74 [Bmim][CF3SO3]高壓離子液體體積 147
Table 4 75 [Bmim][CF3SO3]離子液體所受浮力BIL 148
Table 4 76 [Bmim][CF3SO3]真實重量Wact 149
Table 4 77 [Bmim][CF3SO3]吸收二氧化碳重量 150
Table 4 78 [Bmim][CF3SO3]吸收二氧化碳的莫爾分率Xco2 151
Table 4 79 [Bmim][CF3SO3]吸收二氧化碳之w% 152
Table 4 80回歸出[Bmim][CF3SO3] eqn 4-1~4-4之參數值 154
Table 4 81 本系統吸收量比較 156

圖目錄
Fig. 1 1常見之陰、陽離子結構式,相互搭配可結合出許多不同的離子液體 4
Fig. 2 1 Static high-pressure vapor-liquid equilibrium apparatus. (Blanchard et al., 2001) 16
Fig. 2 2 Schematic of the balance setup. Pressures up to 20 bar can be measured, and the system is completely automated. 17
Fig. 2 3溶解度裝置簡圖 : A, 觀察高壓平衡圓管兩端有青玉窗口及磁石攪拌器; B, 恆溫器; C, 氣體槽; D, 壓力轉移器; E, 循環水槽; F, 溶劑混合槽; G, 高壓注入器; H, AC-bridge及三個白金阻抗溫度計; I, 溶液出口; J, 冷卻槽; k, 真空幫浦 ( Xia et al., 2004) 19
Fig. 2 4 Hiden Isochema IGA003 微量天平簡圖,符號說明:箭號B為樣品端的浮力方向,箭號Wg為樣品端重力方向,i1 樣品盤,i2 吊絲,i3 鍊; j1法碼端,j2 掛勾,j3 鍊。(Shiflett and Yokozeki, 2005) 21
Fig. 2 5 常見imidazolium陽離子 23
Fig. 2 6 [Bmim]+ 陽離子 24
Fig. 3 1Micro-Balance Thermo D-110 (Thermo Electron Corporation) 38
Fig. 3 2微量天平結構圖 (Thermo Electron Corporation) 39
Fig. 3 3藥品純化裝置 41
Fig. 3 4微量天平實驗裝置簡圖 43
Fig. 3 5軟體控制介面流程圖 44
Fig. 3 6 浮力影響示意圖 45
Fig. 4 1 Density of [Bmim][PF6] 52
Fig. 4 2 Density of [Bmim][BF4] 55
Fig. 4 3 Density of [Bmim][MeSO4] 58
Fig. 4 4 Density of [Bmim][CF3SO3] 61
Fig. 4 5 Viscosity of [Bmim][PF6] 64
Fig. 4 6 Viscosity of [Bmim][BF4] 67
Fig. 4 7 Viscosity of [Bmim][MeSO4] 70
Fig. 4 8 Viscosity of [Bmim][CF3SO3] 73
Fig. 4 9 weight of empty pan as function of T and P 74
Fig. 4 10 [Bmim][PF6] 高壓密度文獻值 81
Fig. 4 11 [Bmim][PF6] 本研究系統之高壓密度 82
Fig. 4 12 固定溫度下考量離子液體高壓密度及未考量離子液體高壓密度之浮力比較 83
Fig. 4 13 溶解度計算流程 84
Fig. 4 14 313.15K [Bmim][PF6]文獻值與本研究實驗值比較 86
Fig. 4 15 [Bmim][PF6] 本研究二氧化碳溶解度結果 101
Fig. 4 16 本研究[Bmim][PF6]實驗數值及其回歸結果 102
Fig. 4 17 [Bmim][PF6]吸收量比較 104
Fig. 4 18 [Bmim][BF4] 323.15 K 本系統與文獻值比較 105
Fig. 4 19 [Bmim][BF4] 本研究二氧化碳溶解度結果 119
Fig. 4 20本研究[Bmim][BF4]實驗數值及其回歸結果 120
Fig. 4 21 [Bmim][BF4]吸收量比較 121
Fig. 4 22 [Bmim][MeSO4]本研究二氧化碳溶解度結果 122
Fig. 4 23本研究[Bmim][MeSO4]實驗數值及其回歸結果 136
Fig. 4 24 [Bmim][MeSO4]吸收量比較 138
Fig. 4 25 [Bmim][CF3SO3] 本研究二氧化碳溶解度結果 139
Fig. 4 26本研究[Bmim][CF3SO3]實驗數值及其回歸結果 153
Fig. 4 27 [Bmim][CF3SO3]吸收量比較 155
Fig. 4 28 303.15K本系統溶解度比較圖 158
Anthony, J. L.; Maginn, E. J.; Brennecke, J. F. Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate. J. Phys. Chem. B 2002, 106, 7315-7320.
Arstad, B.; Blom, R.; Swang, O. CO2 Absorption in Aqueous Solutions of Alkanolamines: Mechanistic Insight from Quantum Chemical Calculations. J. Phys. Chem. A 2007, 111, 1222-1228.
Baltus, R. E.; Culbertson, N. H.; Dai, S.; Luo, H.; DePaoli, D. W. Low-pressure Solubility of Carbon Dioxide om Room-Temperature Ionic Liquids Measured with Quartz Crystal Microbalance. J. Phys. Chem. 2004, 108, 721-727.
Blanchard, L. A.; Gu, Z.; Brennecke, J. F. High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems. J. Phys. Chem. B 2001, 105, 2437-2444.
Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Nature 1999, 399, 28.
Boon, J. A.; Levisky, J. A.; Pflug, J. L.; Wilkes, J. S. J. Org. Chem. 1986, 51, 480.
Boyle, T. J.; Ingersoll, D.; M; Rodriguez, A.; Tafoya, C. J.; Doughy, D. H. J. Electrochem. Soc 1999, 146.
Buzzeo, M. C.; Klymenko, O. V.; Wadhawan, J. D.; Hardacre, C.; Seddon, K. R.; Compton, R. G. Voltammetry of Oxygen in the Room-Temperature Ionic Liquids 1-Ethyl-3-methylimidazolium Bis((trifluoromethyl)sulfonyl)imide and Hexyltriethylammonium Bis((trifluoromethyl)sulfonyl)imide: One-Electron Reduction To Form Superoxide. Steady-State and Transient Behavior in the Same Cyclic Voltammogram Resulting from Widely Different Diffusion Coefficients of Oxygen and Superoxide. J. Phys. Chem. A 2003, 107, 8872-8878.
Chauvin, Y.; Oliver-Bourbigou, H. Nonaqueous ionic liquids as reaction solvents. Chemtech 1995, 25, 26-30.
Chum, H. L.; Koch, V. R.; Miller, L. L.; Osteryong, R. A. J. Am. Chem. Soc. 1975, 97, 3264.
Dai, W.; Tang, H. Solubilities of gases in Rectisol process. Jisuanji Yu Yingyong Huaxue 1994, 11, 44-51.
de Azevedo, R. G. E., Jose M. S. S.; Najdanovic-Visak, Vesna; Visak, Zoran P.; Guedes, Henrique J. R.; da Ponte, Manuel Nunes; Rebelo, Luis P. N. Thermophysical and Thermodynamic Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Hexafluorophosphate over an Extended Pressure Range. Journal of Chemical and Engineering Data 2005, 50, 997-1008.
deMontigny, D.; Tontiwachwuthikul, P.; Chakma, A. Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption. Journal of Membrane Science 2006, 277, 99-107.
Doyle, M.; Choi, S. K.; Proulx, G. J. Electrochem. Soc 2000, 147, 34.
Fredlake, C. P. C., J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F. Thermophysical properties of imidazolium-based ionic liquids. Journal of Chemical and Engineering Data 2004, 49, 954-964.
Gu, Z.; Brennecke, J. F. Volume Expansivities and Isothermal Compressibilities of Imidazolium and Pyridinium-Based Ionic Liquids. J. Chem. Eng. Data 2002, 47, 339-345.
Hagiwara, R.; Ito, Y. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. Journal of Fluorine Chemistry 2000, 105, 221-227.
Harris, K. R.; Woolf, L. A.; Kanakubo, M. Temperature and Pressure Dependence of the Viscosity of the Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate. J. Chem. Eng. Data 2005, 50, 1777-1782.
Huang, F.-H.; Li, M.-H.; Lee, L. L.; Starling, K. E. An Accurate Equation of State for Carbon Dioxide. Journal of Chemical Engineering of Japan 1985, 18, 490-496.
Huddleston, J. G. V., A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Liquid-Liquid Equilibrium in Binary System [bmim][PF6] + 1-Butanol. J. Chem. Eng. Data 2001, 51, 2126-2131.
Hurley, F. H.; Wier, T. P. J. Electrochem. Soc 1951, 98, 203.
Husson-Borg, P.; Majer, V.; Costa Gomes, M. F. Solubilities of Oxygen and Carbon Dioxide in Butyl Methyl Imidazolium Tetrafluoroborate as a Function of Temperature and at Pressures Close to Atmospheric Pressure. J. Chem. Eng. Data 2003, 48, 480-485.
Jadhav, P. D.; Rayalu, S. S.; Biniwale, R. B.; Devotta, S. CO2 emission and its mitigation by adsorption on zeolites and activated carbon. Current Science Association 2007, 92, 724-726.
Kabo, G. J.; Blokhin, A. V.; Paulechka, Y. U.; Kabo, A. G.; Shymanovich, M. P.; Magee, J. W. Thermodynamic Properties of 1-Butyl-3-methylimidazolium Hexafluorophosphate in the Condensed State. J. Chem. Eng. Data 2004, 49, 453-461.
Kim, K.-S. S., B.-K.; Ziegler, F. Refractive index and heat capacity of 1-butyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium tetrafluoroborate, and vapor pressure of binary systems for 1-butyl-3-methylimidazolium bromide + trifluoroethanol and 1-butyl-3-methylimidazolium tetrafluoroborate + trifluoroethanol. Fluid Phase Equilib. 2004, 218 215-220.
Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S. Chem. Commun 2002, 374.
Kumelan, J.; Perez-Salado Kamps, A.; Tuma, D.; Maurer, G. Solubility of CO2 in the ionic liquid [hmim][Tf2N]. The Journal of Chemical Thermodynamics 2006, 38, 1396-1401.
Liu, G. B.; Yu, K. T.; Yuan, X. G.; Liu, C. J. New Model for Turbulent Mass Transfer and Its Application to the Simulations of a Pilot-Scale Randomly Packed Column for CO2-NaOH Chemical Absorption. Ind. Eng. Chem. Res. 2006, 45, 3220-3229.
Liu, J. f.; Jiang, G. b.; Chi, Y. g.; Cai, Y. q.; Zhou, Q. x.; Hu, J. T. Use of Ionic Liquids for Liquid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons. Anal. Chem., 2003, 75, 5870-5876.
Liu, Y.; Wang, M.; Li, Z.; Liu, H.; He, P.; Li, J. Langmuir 2005, 21, 1618.
Lo, W. H.; Yang, H. Y.; Wei, G. T. Studies on liquid/liquid extraction of copper ion with room temperature ionic liquid. Green Chemistry 2003, 5, 639-642.
MacFarlane, D. R.; Huang, J.; Forsyth, M. Nature 1999, 402, 792.
Park, S.; Kazlauaks, R. J. Curr. Opin. Biotecnol 2003, 14, 432.
Pereiro, A. B. V., P.; Tojo, E.; Rodriguez, A. Physical Properties of 1-Butyl-3-methylimidazolium Methyl Sulfate as a Function of Temperature. Journal of Chemical & Engineering Data 2007, 52, 377-380.
Perez-Salado Kamps, A.; Tuma, D.; Xia, J.; Maurer, G. Solubility of CO2 in the Ionic Liquid [bmim][PF6]. J. Chem. Eng. Data 2003, 48, 746-749.
Rebelo, L. P. N. N.-V., V.; Visak, Z. P.; Nunes da Ponte, M.; Szydlowski, J.; Cerdeirina, C. A.; Troncoso, J.; Romani, L.; Esperanca, J. M. S. S.; Guedes, H. J. R.; de Sousa, H. C. A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions. Green Chem 2004, 6, 369-381.
Rumpf, B.; Maurer, G. An experimental and theoretical investigation on the solubility of carbon dioxide in aqueous electrolyte solutions. Ber. Bunsenges. Phys. Chem. 1993, 97, 85-97.
Schladt, M. J.; Filburn, T. P.; Helble, J. J. Supported Amine Sorbents under Temperature Swing Absorption for CO2 and Moisture Capture. Ind. Eng. Chem. Res. 2007, 46, 1590-1597.
Seddon, K. R.; Stark, A.; Torres, M.-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 2000, 72, 2275-2287.
Sen, M.; Paolucci, S. "Using Carbon dioxide and ionic liquids for absorption refrigeration." In 7th IIR Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway, 2006.
Shackelford, J. F.; Alexander, W. CRC Materials Science and Engineering Handbook; 3 ed.; CRC Press LLC: Davis, 2000.
Shah; A., V. Carbon dioxide removal from ammonia synthesis gas with Selexol solvent process. Energy Process 1988, 8, 67-70.
Shiflett, M. B.; Yokozeki, A. Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids: [bmim][PF6] and [bmim][BF4]. Ind. Eng. Chem. Res. 2005, 44, 4453-4464.
Shiflett, M. B.; Yokozeki, A. Solubility of CO2 in Room Temperature Ionic Liquid [hmim][Tf2N]. J. Phys. Chem. B 2007, 111, 2070-2074.
Span, R.; Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509-1596.
Stepnowski, P. Anal Bioanal. Chem. 2005, 381, 189.
Tokuda, H. T., S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M. How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. J. Phys. Chem. B 2006, 110, 19593-19600.
Tomida, D. K., A.; Qiao, K.; Yokoyama, C. Viscosity of [bmim][PF6] and [bmim][BF4] at High Pressure1. Int. J. Thermophys. 2006, 27, 39-47.
Walden, P. Acad. Sci. St. Petersburg 1914, 405-422.
Wei, G.-t.; Chen, J.-c.; Yang, Z. Studies on liquid/liquid extraction of copper ion with room temperature ionic liquid. Journal of Chinese Chemical Society 2003, 50, 1123-1130.
Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071-2084.
Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun 1992, 965.
Xia, J.; Jodecke, M.; Perez-SaladoKamps, A.; Maurer, G. Solubility of CO2 in (CH3OH + H2O). J. Chem. Eng. Data 2004, 49, 1756-1759.
Xu, G.-W.; Zhang; Cheng-Fang; Qin; Shu-Jun; Zhu; Bin-Chen Desorption of CO2 from MDEA amd Activated MDEA Solutions. Industrial and Engineering Chemistry Research 1995, 34, 874-880.
Yan, S.; Fang, M.; Zhang, W.; Luo, Z.; Cen, K. Technique analysis and research progress of CO2 seperation from flue gas by chemical absorption. Huagong Jinzhan 2006, 25, 1018-1024.
Ye, C. F.; Liu, W. M.; Chen, Y. X.; Yu, L. G. Chem. Commun 2001, 2244.
Zhang, S.; Chen, Y.; Ren, R. X.-F.; Zhang, Y.; Zhang, J.; Zhang, X. Solubility of CO2 in Sulfonate Ionic Liquids at High Pressure. J. Chem. Eng. Data 2005, 50, 230-233.
吳福成,俄羅斯臨門一腳「京都議定書」生效,能源報導,2005年。
李汝雄 綠色溶劑 ----離子液體的合成與應用; 化學工業出版社: 北京, 2004.
李汝雄; 王建基 離子液體的熱物理性質研究進展. Journal of Beijing Institute of Petro-chemical Technology 2005, 13, 4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top