跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 02:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥均
研究生(外文):Yen-Chun Chen
論文名稱:發展使用者認知為基礎的知識本體應用於資訊檢索系統
論文名稱(外文):Developing Consumer Cognition-Aware Ontology for Information Retrieval System
指導教授:戚玉樑戚玉樑引用關係
指導教授(外文):Yu-Liang Chi
學位類別:碩士
校院名稱:中原大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:82
中文關鍵詞:知識擷取使用者認知語意知識本體知識註記感性工學
外文關鍵詞:Knowledge AcquisitionSemanticsKnowledge AnnotationKansei EngineeringOntologyCognition-Aware
相關次數:
  • 被引用被引用:4
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
為改善過去詮釋資料僅對資料作描述,及未定義結構化資訊與其領域正規知識表達的映對關係,本研究使用語意的註記方式,以XML-based的註標語言,例如:RDF與OWL來表達資料間更豐富的關係,將資料視為概念,利用知識本體技術對資料背後的領域知識塑模,對概念下定義,以推論出資料間的隱含關係。知識本體技術已成為取代詮釋資料的方法之一,但是目前的知識本體設計,仍以專家的角度來建置,使得系統不理解使用者的語意,也無法滿足其需求。本研究在探討以使用者需求為出發點的知識本體工程建置,考慮使用者與專家對於專門領域的認知差異,因為使用者對於不熟悉的領域,會擁有不足的專業理性知識,所以會以感性想法來理解領域的內容。除領域知識本體外,發展認知知識本體架構,令所建置的知識本體庫不僅具備此專門領域的知識外,更滿足使用者的內隱需求,即包含其隱含的感性知識,使系統理解使用者的語意,檢索系統提供更多元以及人性化的查詢。從一開始認知蒐集階段,找出使用者所具備的「知」的程度,納入使用者所擁有的直覺、知覺、情緒等,作為知識本體設計的考量,利用感性工學(Kansei Engineering)的方法,透過問卷擷取使用者對領域中標的物的認知,找尋標的物特徵與使用者認知之間的關係,以設計認知知識本體模型。對於領域中標的物的描述,從單純的資料層級描述提升為語意層級的描述,系統的開發也從開發者角度轉換為使用者的角度,最後,以精確率與召回率評估此檢索系統,發現此系統能滿足不同專業程度的使用者,並縮小相關資訊的範圍,提供使用者一個符合不同程度需求的人性化智慧檢索系統。
This study develops a cognition-aware ontology in addressing poor emotional representation. Cognition-aware design refers to define the subjective emotional relationships between ordinary users and knowledge bases. The primary task of this study is translating human emotions into sensory-based properties that ontology intends to communicate through affective descriptions of their physical attributes. Since ontology consists of concepts and their relationships, the cognition-aware design must be applied to the design elements of concepts. To implement cognition-aware of ontology development, finding the elements of concepts such as physical attributes and their corresponding cognition properties are essential. Several methods have been utilized particularly in the expertise acquisition stage such as a questionnaire test, an affinity diagram, and statistical analysis. A walkthrough example of identifying dog breed is given to demonstrate the benefits of using a cognition-aware approach in the ontology building processes, including knowledge acquisition, concepts modeling, and ontology representation. Empirical lesson indicated that cognition-aware design is necessary especially when the users are non-experts. Experimental results indicated the new design helps users obtain appropriate results after inputting affective descriptions. The performance evaluation is positive.
目錄
摘要 I
英文摘要 II
誌謝辭 III
目  錄 IV
圖 目 錄 VI
表 目 錄 VII
第一章 緒論 1
1.1 研究背景及動機 1
1.2 研究問題 2
1.3 研究目的 3
1.4 研究流程 4
第二章 文獻探討 5
2.1 使用者認知 5
2.2 知識擷取 7
2.3 知識表達 9
第三章 研究設計 14
3.1 系統架構 14
3.2 認知擷取 15
3.3 知識本體建置 18
3.4 概念檢索 19
第四章 家犬領域認知擷取 22
4.1 家犬認知知識本體塑模流程 22
4.2 問卷前置準備 24
4.3 使用者對家犬外觀認知問卷設計 32
第五章 知識本體庫設計 35
5.1 家犬特徵與感性詞彙相關分析之結果 37
5.2 家犬知識本體 42
5.3 感性概念檢索 46
5.4 檢索系統評估 49
第六章 結論與建議 53
6.1 研究結論與貢獻 53
6.2 研究限制 54
6.3 未來研究建議 55
參考文獻 57
附錄 64
A.『體型』變異數分析結果 64
B.『毛髮』變異數分析結果 66
C.『頭部』變異數分析結果 68
D.『耳朵』變異數分析結果 70
E.『吻部』變異數分析結果 72
F.『尾巴』變異數分析結果 74

圖 目 錄
圖1-1 語意式網站 1
圖1-2 研究流程 4
圖2-1 訊息處理模式的認知歷程 6
圖2-2 知識場觀點的認知歷程 6
圖2-3 產品特徵與感性 7
圖2-4 感性詞彙與產品組成特徵連結 9
圖3-1 系統架構圖 15
圖3-2 使用者需求管理歷程 15
圖3-3 感性工學模型 17
圖3-4 知識本體建置程序圖 18
圖3-5 知識本體庫設計 19
圖3-6 系統檢索流程 21
圖4-1 使用者認知為基礎之知識本體建置流程 23
圖4-2 家犬組成特徵 25
圖4-3 群數凝聚過程 28
圖4-4 家犬樹狀圖 29
圖4-5 家犬感性詞彙 32
圖4-6 問卷設計 34
圖5-1 知識本體庫與資料庫 35
圖5-2 知識本體庫設計與概念檢索 36
圖5-3 以PROTÉGÉ編輯家犬知識本體 42
圖5-4 認知知識本體分類 43
圖5-5 註記家犬知識本體的OWL檔 44
圖5-6 概念檢索介面 47
圖5-7 回傳符合的家犬 48
圖5-8 點選目標家犬 48
圖5-9 回傳符合的警衛犬 49

表 目 錄
表2-1 感性工學分類 8
表2-2 知識表達的四種形式 10
表2-3 知識本體定義 11
表3-1 RDQL檢索範例 20
表4-1 S-STRESS值與RSQ值 26
表4-2 家犬與其各群的中心距離 30
表4-3 問卷介紹 32
表4-4 篩選出的34對感性詞彙 33
表5-1 毛髮對於剛硬<-->柔軟之描述性統計量 39
表5-2 毛髮對於剛硬<-->柔軟之同質性檢定 39
表5-3 毛髮對於剛硬<-->柔軟之平均數相等穩健檢定 39
表5-4 毛髮對於剛硬<-->柔軟之描述性統計量 40
表5-5 尾巴對於剛硬<-->柔軟之同質性檢定 40
表5-6 尾巴對於剛硬<-->柔軟之變異數分析 40
表5-7 感性詞彙與各部位之相關性 41
表5-8 黃金拾獵犬外觀特徵註記範例 44
表5-9 黃金拾獵犬性格特徵註記範例 46
表5-10 警衛犬註記範例 49
表5-11 評估方法 50
表5-12 評估結果 51
[中文部份]
[1]DOG NEWS編輯部,『狗狗犬種百科』,臺北:數位人資訊股份有限公司,2006年。
[2]林震岩,『多變量分析:SPSS的操作與應用』,臺北:智勝文化,2006年。
[3]林師模、陳苑欽,『多變量分析:管理上的應用』,臺北:雙葉書廊,2003年。
[4]黃俊英,『多變量分析』,臺北 : 中國經濟企業硏究所,1995年。
[5]黃惇勝,『台灣式KJ法原理與技術』,臺北:中國生產力中心,1995年。
[6]黃榮彬、原田 昭,「日本感性工學發展現況及其在遠隔控制介面設計上應用的可能性」,中日設計教育研討會論文集,1998年。
[7]戚玉樑,「知識擷取與知識表達協同程序於建構知識本體的概念架構」,資訊管理學報,13(2),2006年,頁193-215。
[8]戚玉樑,「以本體為核心的圖像註記應用於知識化資訊檢索」,國科會專題研究報告,(NSC95-2416-H-033-009),桃園,2006年。
[9]周君瑞,「複合感性意象之塑造-以造型特徵為基礎」,國立成功大學工業設計研究所碩士論文,2001年。
[10]鄭麗玉,『認知心理學』,臺北:五南圖書出版公司,1993年。
[11]朱光潛,『文藝心裡學』,上海:中國開明書店,1936年。
[12]饒見維,『知識場論-認知、思考與教育的統合理論』,臺北:五南圖書出版公司,1994年。
[13]二見良治,『圖形思考法』,臺北:先鋒企業管理發展中心 圖形思考研究小組譯,1988年。
[14]顏月珠,『應用統計學』,臺北:台大法律學院圖書文具部經銷,2001年。

[英文部份]
[1] Alberts, L. K., “YMIR: an Ontology for Engineering Design,” Ph. D.
Dissertation, University of Twente, 1993.
[2] Alia, I.A., Philip, D., Christopher, B. J., Gailhua, F. and David, F., “A critical
evaluation of ontology languages for geographic information retrieval on the
Internet,” Journal of Visual Languages and Computing, 16(4), 2005, pp.
331-358.
[3] Belkin, N. J. and Vickery, A. “Interaction in Information Systems:a Review of
Research from Document Retrieval to Knowledge-based Systems,” Library and
Information Research Report 35, The British Library, 1985.
[4] Berners-Lee, T., Hendler, J. and Lassila, O., “The Semantic Web,” Scientific
American, 284(5), 2001, pp. 34-43.
[5] Berrais, A., “Knowledge-based expert system: User interface implications,”
Advances in Engineering Software, 28(1), 1997, pp. 31-41.
[6] Brown, M. B. and Forsyth, A. B., “The Small Sample Behavior of Some
Statistics Which Test the Equality of Several Means,” Technometrics, 16(1),
1974, pp. 129-132.
[7] Choi, B., Henson, K., Raghu, T.S. and Vinze, A., “Knowledge Sharing Ontology
to Facilitate Adopting,” Communications of the ACM, 47(11), 2004, pp. 85-90.
[8] Cleverdon, C. W., Mills, L. and Keen, M., “Factors Determining the Performance
of Indexing Systems,”ASLIB Cranfield Project, Cranfield, 1966.
[9] Davis, R. Shrobe, H. and Szolovits, P. “What is a Knowledge Representation?”
AI Magazine, 14(1), 1993, pp. 17-33.
[10] Esquivel, D., Bouchard, C. and Aoussat, A., “Case study based on Kansei
Engineering towards a new subjective vehicle assessment tool,” Actes de
Conference, Marrakech, Maroc, 2006.
[11] Euzenat, J., “Eight Questions about Semantic Web Annotations,” IEEE
Intelligent Systems, 17(2), 2002, pp. 55-62.
[12] Fensel, D., McGuinness, D.L., Ng, W.K., Schulten, E., Lim, E. P. and Yan, G.,
“Ontologies and Electronic Commerce,” IEEE Intelligent Systems, 16(1), 2001,
pp. 8-14.
[13] Fikes, R. and Farquhar, A. “Distributed Repositories of Highly Expressive
Reusable Ontologies,” IEEE Intelligent Systems and Their Applications, 14(2),
1999, pp. 73-79.
[14] Gomez-Perez, A., Fernandez-Lopez, M. and Corcho-Garcia, O., “Ontological
Engineering: with Examples from the Areas of Knowledge Management,
E-commerce and the Semantic Web,” Springer Verlag, New York, 2004.
[15] Gordon, M. and Pathak, P. “92HFinding Information on the World Wide Web: The
Retrieval Effectiveness of Search Engines,” 93HInformation Processing and
Management, 35(2), 1999, pp. 141-180.
[16] Grimsæth, K., “Kansei Engineering:Linking emotions and product features,”
2005, Online Available at: 94Hhttp://design.ntnu.no/forskning/artikler/2005.htm .
[17] Gruber, T.R., “Translation Approach to Portable Ontology Specification,”
Knowledge Acquisition, 5(2), 1993, pp. 199-220.
[18] Gruber, T. R., “Toward Principles for the Design of Ontologies Used for
Knowledge Sharing,” International Journal of Human and Computer Studies,
43(5/6) , 1995, pp. 907-928.
[19] Gruninger, M. “Integrated Ontologies for Enterprise Modelling,” in Enterprise
Engineering and Integration, Kosanke, K. and Nell, J.G. (eds.), Building
International Consensus, Springer, 1997, pp. 368-377.
[20] Hartung, J., Argaç, D. and Makambi, K. H., “Small Sample Properties of Tests
on Homogeneity in One-Way ANOVA and Meta-Analysis,” Statistical Papers,
43, 2002, pp. 197-235.
[21] Hayes-Roth, F. “Knowledge-Based Expert Systems,” IEEE Computer, 17(10),
1984, pp. 263-273.
[22] Hewlett-Packard Development Company, L.P. “Jena – A Semantic Web
Framework for Java,” 2007, Online Available at: 95Hhttp://jena.sourceforge.net/ .
[23] Kato, T. “Cognitive user interface to cyber space database: human media
technology for global information infrastructure,” Proceedings of the
International Synaposaum on Coopemtioe Database Sysems for Advanced
Applications, Kyoto, Japan, 1996, pp. 184-190.
[24] Kobayashi, H. and Ota, S., “the Semantic Network of KANSEI Words,”
Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, 1, 2000, pp. 690-694.
[25] Lan, L. T. and Boucher, A. “An interactive image retrieval system: from
symbolic to semantic,” International Conference on Electronics, Informations
and Communications (ICEIC 2004), Hanoi (Vietnam), 2004.
[26] Lee, S. H., Harada, A. and Stappers, P.J., “Pleasure with Products: Design based
on Kansei,” Pleasure with Products: Beyond usability, Green, W. and Jordan, P.
(ed.), Taylor and Francis, London, 2002, pp. 219-229.
[27] Lin, J., Fox, M. S. and Bilgic, T. “A Requirement Ontology for Engineering
Design,” In Concurrent Engineering: Research and Applications, 4(3), 1996, pp.
279-291.
[28] Lin, J., Fox, M. S. and Bilgic, T. “ A Product Ontology,” Internal Report,
Enterprise Intergration Laboratory, Department of Industrial Engineering,
University of Toronto, Toronto, Canada, 1997.
[29] López de Vergara, J.E., Villagrá, V.A. and Berrocal, J., “Applying the Web
Ontology Language to management information definitions,” IEEE
Communications Magazine, 42(7), 2004, pp. 68-74.
[30] Maryland Information and Network Dynamics Lab, “Mindswap,” 2003, Online
Available at: 96Hhttp://www.mindswap.org/2003/pellet/.
[31] McGraw, K. L. and Harbison-Briggs, K, Knowledge Acquisition: Principles and
Guidelines, Prentice-Hall, Englewood Cliffs, New Jersey, 1989.
[32] Mitsuishi, T., Sasaki, J. and Funyu, Y. “A Design of A Kansei Retrieval System
for Distributed Multi-media Databases,” 15th International Conference on
Information Networking (ICOIN'01), 2001, pp. 285-290.
[33] Nagamachi, M., “Kansei Engineering: A new ergonomic consumer-oriented
technology for product development,” International Journal of Industrial
Ergonomics, 33(3), 1995, pp. 289-294.
[34] Nonaka, I. and Takeuchi, H., the Knowledge-creating Company – How Japanese
Companies Create the Dynamics of Innovation, Oxford university press, New
York, 1995.
[35] Noy, N. F. and McGuinness D. L., Ontology development 101: A guide to
creating your first ontology Technical Report, Stanford Medical Informatics,
Stanford University, 2001.
[36] Osgood, Ch. E., Suci, G. J. and Tannenbaum, P. H., The Measurement of
meaning, University of Illinois, 1957.
[37] PetsUnited, “Dog.com,” 2007, Online Available at: 97Hhttp://www.dog.com .
[38] Picard, R., Affective Computing, Massachusetts Institute of Technology,
Cambridge, 1997.
[39] Rich, E. and Knight, K., Artificial Intelligence, McGraw-Hill, New York, 1991.
[40] Saiedian, H. and Dale, R., “Requirements engineering: making the connection
between the software developer and customer,” Information and Software
Technology, 42(6), 2000, pp. 419-428.
[41] Schütte, S., “Engineering emotional values in product design:Kansei Engineering
in development,” 2005, Online Available at:
98Hhttp://www.diva-99Hportal.org/liu/abstract.xsql?dbid=497 .
[42] Smirnov, A.V. and Chandra, C. “Ontology-based Knowledge Management for
Co-Operative Supply Chain Configuration,” Proceedings of 2000 AAAI Spring
Symposiumm, Bringing Knowledge to Business Processes, Standford, CA, AAAI
Press, 2000, pp. 85-92.
[43] Sowa, J. F. “Knowledge Representation: Logical, Philosophical, and
Computational Foundations,” Brooks Cole Publishing Company, Pacific Grove,
CA, 2000.
[44] Stamou, G., Ossenbruggen, J., Pan, J. Z. and Schreiber, G.., “100HMultimedia
Annotations on the Semantic Web,” IEEE Multimedia, 13(1), 2006, pp. 86-90.
[45] Toyama, K., Logan, R. and Roseway, A., “Geographic location tags on digital
images,” Proceedings of the Eleventh ACM international Conference on
Multimedia, 2003, pp. 156-166.
[46] Walczak, S., “Knowledge acquisition and knowledge representation with class:
The Object-oriented paradigm,” Expert System with Applications, 15(3-4), 1998,
pp. 235-244.
[47] Wang, J., “A Knowledge Network Constructed by Integrating Classification,
Thesaurus, and Metadata in Digital Library,” International Information and
Library Review, 35(2-4), 2003, pp. 383-397.
[48] Welch, B. L., “On the Comparison of Several Mean Values: An Alternative
Approach,” Biometrika, 38(3/4), 1951, pp. 330-336.
[49] W3C Member Submission, “RDQL – A Query Language for RDF,” 2004, Online
Available at: 101Hhttp://www.w3.org/Submission/RDQL/ .
[50] W3C Recommendation, “OWL: Web Ontology Language Overview,” 2004,
Online Available at: 102Hhttp://www.w3.org/TR/owl-features/ .
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top