跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林永裁
研究生(外文):Yeong-Tsair Lin
論文名稱:適用於低電壓行動電子系統電源管理積體電路
論文名稱(外文):Low Voltage Power Management Integrated Circuits for Mobile Electronic Systems
指導教授:鍾文耀鍾文耀引用關係
指導教授(外文):Wen-Yaw Chung
學位類別:博士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:148
中文關鍵詞:脈波寬度調變並聯轉換器主動式電流感測電壓模式轉換器電流模式轉換器
外文關鍵詞:parallel DC-DC converterpulse-width modulation (PWM)active current sensing techniquevoltage-mode DC-DC convertercurrent-mode DC-DC converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
摘要
由於體積小、可靠性增加及相容於標準CMOS 製程,使得行動電子產品之需求大幅度的增加,行動電子產品成為供電系統非常重要的應用領域,行動電子產品需要高效率低功率的電源管理電路,以便讓這類電子產品在使用單一電池的環境下能夠使系統的運作時間達到最長,使得電源轉換器的趨勢已經朝向高效率與低功率消耗的方向發展,因此,在行動式電子產品的應用領域中,選擇適當的技術來設計便成為非常重要的課題。
在本論文中設計了數種不同規格及用途的電壓型直流電源管理電路:(1)電壓模式降壓型直流電壓轉換器;(2)低電壓高效率的電壓模式降壓型直流電壓轉換器;(3)低電壓高效率的電壓模式升壓型直流電壓轉換器。論文中設計了兩個新型的唯電晶體脈波寬度調變電路應用於這些直流電壓轉換器上,這兩個脈波寬度調變電路的振盪週期是由虛擬雙曲線電路來補償使電路的振盪週期維持幾乎是定頻。電壓模式降壓型電壓轉換器的最小供應電壓為1.5伏特;而低電壓電壓模式的降壓型及低電壓電壓模式的升壓型兩個轉換器的最小供應電壓都是1.2伏特。
另一種在論文中討論的是一個新型的電流模式直流電壓轉換器,它是以磁滯電流控制降壓型直流轉換器,其最小供應電壓只需1.5伏特,電路結簡單非常適用於低電壓高電流之行動電子裝置並聯操作系統上。使用於轉換器的電流感測電路具有主動式全週期感測特性,無論是電感充電或放電期間均可將電感電流成比率的方式感測輸出。這個電流模式直流電壓轉換器還嵌入取樣保持電路以及感測電流共享電路,不但使感測電流的突波極度的降低因而大幅度的提高感測電流的穩定度與精確度,而且使轉換器可以並操作。本電流模式直流電壓轉換器最大的優點是:即使使用於各轉換器的電感不平衡仍然可以磁滯電流並聯操作,具備自動過電流保護作用,這個電流模式降壓電壓轉換器在需要並聯操作的直流電壓轉換器場合、多媒體電源供應系統、電力電子以及通訊裝置上將具有很大的用途。
Abstract
With the advantages of small size, reliability and compatibility to standard CMOS technology, portable electronic devices are in great demand, and portable power devices become an important application area for power semiconductor integrated circuits. Portable devices require high efficiency low-voltage DC-DC converters to maximize the run time of the devices from a single cell battery source. As a result, the trend is focused on implementation of power converters with high-efficiency and low-power consumption. Consequently, to select an appropriate technology is an important issue for portable applications.
In this thesis, a series of PWM switching control DC-DC converters: 1) integrated voltage-mode buck DC-DC converter; 2) low voltage integrated buck DC-DC converter; 3) low voltage integrated boost DC-DC converter are developed. Two PWM circuits that only utilize CMOS transistors are developed for those converters. The duty cycle of both PWM circuits are compensated by the pseudo hyperbola curve current generator to achieve almost constant frequency operation. The minimum operating voltage of the integrated voltage-mode buck DC-DC converter is 1.5 V and those two low voltage DC-DC converters can operate with low supply voltage of 1.2 V.
A new current-mode DC-DC converter with active current sensing technique is also introduced and implemented. The minimum operating voltage of this integrated current-mode buck DC-DC converter is 1.5 V. The current sensing circuit used in this converter can sense complete waveforms of the inductor and output currents throughout the whole switching cycles. Furthermore, a sample-and-hold circuit and current sharing circuit are used to reduce the current spike during the switching interval and to enable the ability of parallel operation of the converter. The proposed current-mode DC-DC converter is simple and has a universal usage for portable electronics in parallel systems. The main advantages of this scheme are: the proposed circuits can work in parallel hysteresis current controlled step-down DC-DC converters such that the load current can be easily managed through control theories, and the current sensing circuit works well even if the inductors are mismatched. This current sensing circuit will be useful in parallel DC-DC converters, multimedia power supporting, power electronics and telecommunication applications.
Contents
Chapter 1 Introduction…………………………………………………………1-1
1.1 Motivation…………………………………….…………………………1-1
1.2 Research Goals and Contribution.……………….………………………1-3
1.3 Thesis Organization……………………….…….………………………1-4
Chapter 2 Basics of DC Converter and Literature Review…….……..……2-1
2.1 Introduction………………………………………………………………2-1
2.2 Buck DC Converter………………..……………………………..………2-2
2.2.1 Continuous Conduction Mode…...……………………………...2-2
2.2.2 Output Voltage Ripple…………….………………..……….…...2-7
2.2.3 Discontinuous Conduction Mode……………..…………….…...2-8
2.3 Boost DC Converter……………...…..…………….…... …. …. …. ….2-13
2.4 Conventional PWM Techniques………………………………………..2-19
2.4.1 Voltage-Mode PWM Controllers. …. …. …. …. ………....…...2-20
2.4.2 Current Sensing Techniques. …. …. ………………. …. …... ...2-22
2.5 Solution of Current Sensing Techniques and Drawbacks
Minimization…………………………………………………………..2-25
2.6 Summary……….……. …. …. …. …. …. …. …. …. …. …. …. …. ...2-31
Chapter 3 Integrated CMOS Voltage-Mode Buck DC Converter…………3-1
3.1 Introduction………. …………………………………………………..…3-1
3.2 CMOS Voltage-Mode Buck DC Converter………………………………3-3
3.2.1 CMOS PWM Circuit……………………………………………3-3
3.2.2 Current Compensation Circuit……………………..……………3-8
3.2.3 Error amplifier………………………………………….………3-12
3.2.4 Driving Buffer………………………………………….….……3-15
3.3 Measurement Results………………………………………….…..……3-16
3.3.1 Steady-State Measurements……….........…..…..…..…..…......3-18
3.3.2 Line Regulation…….........…..…..…..…..…..…..……...……....3-20
3.3.3 Load Regulation…...…….........…..…..…..…..…..………….....3-23
3.3.4 Efficiency……….…….........…..…..…..…..…..…………….....3-25
3.4 Summary…………………………………….………………….………3-28
Chapter 4 Low Voltage Integrated Voltage-Mode DC Converter…………4-1
4.1 Introduction………. ………………………………………………….…4-1
4.2 Low Voltage CMOS Voltage-Mode Buck DC Converter…………...…...4-2
4.2.1 Low Voltage CMOS PWM Circuit………….........…………...…4-2
4.2.2 Reference Voltage Generating Circuit…….........……...……...…4-8
4.2.3 Driver Circuit…….........…..…..…..…..…..…..……...……...…4-12
4. 3 Low Voltage Voltage-Mode Boost DC Converter.………......……....…4-14
4.4 Measurement Results.………….........…..…..…..…..…..…..…….........4-16
4.4.1 Steady State Measurements…….........…..…..…..…..…..……...4-19
4.4.2 Line Regulation……….…….…….…….…………...….……....4-20
4.4.3 Load Regulation…….........…..…..…..…..…..………………....4-24
4.4.4 Efficiency…….........…..…..…..…..…..…..……...……...……..4-29
4.5 Summary……….………………………………………………………4-31
Chapter 5 Current-Mode Step-Down DC Converter….……..…………...…5-1
5.1 Introduction………. …………………………………………………..…5-1
5.2 Principles of the Hysteresis-Current-Controlled Techniques……………5-2
5.3 Parallel Step-down DC Converter Using Hysteresis-Current-
Controlled Technique.…………………………………………………....5-3
5.3.1 Current Sensing Circuit. …….........…..…..…..…..…..………..…5-4
5.3.2 Hysteresis Current Comparator …...…….........…..…....…..…...5-10
5.3.3 Driving Circuit…. …….........…..…..…..…..…..…..……...….5-12
5.3.4 Transconductance Gm Circuit…….........…..…..…..…..…..…...5-12
5.3.5 Current Sharing Circuit and Parallel Converter………...….....5-14
5.4 Measurement Results………….........…..…..…..…..…..…..……..…....5-15
5.4.1 Current Sensing Measurements…….........…..…..…..…..…..….5-17
5.4.2 Steady-State Measurements…….........…..…..…..…..…..……...5-18
5.4.3 Load Regulation Measurements..…….........…..…..…..…..….....5-19
5.4.4 The measurements of The Parallel Operation…….........…....….5-21
5.4.5 Efficiency……….........…..…..…..…..…..…..……...……..…....5-22
5.5 Summary….. …….........…..…..…..…..…..…..……...…...…...….…....5-24
Chapter 6 Conclusions and Future Works.. ….. ….. …………………..... ....6-1
6.1 Conclusions.. ….. ………….. ….. …….. …….. ……………......….…...6-1
6.2 Future Works.……….. ….. …….. …….. …….. ……...... ………...…....6-3
References…….. ….. …….. ……..…….. ……..... ………...………………….....A-1
Biography…….. ….. …….. …….. ….. ……..... ………………. ………...…....A-6
Publication List…….. ….. …….. …….. ……..…. …………..... ………....... ..A-6

List of Illustrations
Fig. 2-1 Buck DC converter, (a) circuit and (b) waveforms…...…………………..2-3
Fig. 2-2 Equivalent circuit of the buck converter during mode 1…………………2-3
Fig. 2-3 Conversion ratio of the buck converter………….………………………..2-4
Fig. 2-4 Equivalent circuit of the buck converter during mode 2………………...2-4
Fig. 2-5 Steady-state waveforms: (a) inductor voltage and (b) inductor
current…………………………….…..………….…………………….………2-5
Fig. 2-6 Output capacitor current waveform of the buck converter….……………2-8
Fig. 2-7 Inductor current iL(t) waveform at the boundary between the CCM
and DCM operation.……………………………………………......................2-10
Fig. 2-8 Buck converter equivalent circuits: (a) mode 1, (b) mode 2 and
(c) mode 3..……………………………….…………………………………...2-11
Fig. 2-9 Inductor voltage waveform vL(t) in DCM.................................................2-11
Fig. 2-10 Inductor current IL(t) waveform in DCM..................................................2-12
Fig. 2-11 Boost DC converter: (a) circuit and (b) waveforms..................................2-14
Fig. 2-12 Boost DC converter equivalent circuits: (a) mode 1 and (b). mode 2…..2-15
Fig. 2-13 Boost DC converter waveforms: (a) inductor voltage and
(b) capacitor current...........................................................................................2-15
Fig.2-14 Conversion ratio of the boost converter....................................................2-17
Fig. 2-15 Boost converter waveforms: (a) inductor current and (b) capacitor
voltage……………………...............................................................................2-18
Fig.2-16 Conventional PWM: (a) block diagram and (b) duty ratio
generation.........………………………………………………………………..2-20
Fig 2-17 Sliding-mode constant frequency voltage-mode PWM controller……..2-21
Fig. 2-18 Constant frequency voltage-mode PWM controller..……….................2-21
Fig. 2-19 Digital voltage-mode PWM controller........…..........................................2-22
Fig. 2-20 Basic diagram of current-mode boost DC converter……........................2-24
Fig. 2-21 Basic diagram of current-mode buck DC converter………..……….......2-24
Fig. 2-22 An on-chip current sensing circuit designed with BiCMOS
Process…….......................................................................................................2-25
Fig. 2-23 A CMOS current sensing circuit………………………………………...2-27
Fig. 2-24 Low voltage current sensing circuit………………...…………………...2-27
Fig. 2-25 Low voltage current sensing circuit for boost converter....……………...2-28
Fig. 2-26 Active full-cycle current sensing circuit………….…………….……...2-29
Fig. 3-1 Block diagram of the integrated CMOS Buck DC converter…...………..3-2
Fig. 3-2 The delay cell: (a) circuit and (b) DC transfer characteristics……………3-3
Fig. 3-3 Current-controlled-duty ring oscillator based on the delay cell………......3-5
Fig. 3-4 The waveforms of V1, V2, V3, V4, and Vpo………………………………...3-6
Fig. 3-5 Bias current curve Ib versus controlled voltage Vc of the
compensation circuit………………..……………..……………………………3-7
Fig. 3-6 Approximate linearity approach to find the bias current Ib………………3-7
Fig. 3-7 Pseudo hyperbola bias current generator…………………...…………...3-10
Fig. 3-8 Current compensation circuit…………………………………….….......3-11
Fig. 3-9 The PWM circuit that only utilize CMOS transistors……………….3-12
Fig. 3-10 Error amplifier for the buck converter……………………….……..….3-13
Fig. 3-11 Small signal model of the buck converter……………………………….3-14
Fig. 3-12 Feedback-loop small signal frequency responses, the upper trace
is the loop gain of the converter; the bottom trace is the phase margin
of the converter, respectively.………………….................………………...…3-14
Fig. 3-13 Driving buffer: (a) circuit and (b) output waveforms.………..…………3-15
Fig. 3-14 The layout of the proposed buck DC converter and the power
transistors: (a) the buck DC converter; (b) the power transistors………….…3-17
Fig. 3-15 The Micrograph of the proposed buck DC converter……………...…..3-17
Fig. 3-16 Settling responses of the buck DC converter………………...…………3-18
Fig. 3-17 Steady state experimental results of the buck converter at Vg=3.0 V,
Vout= 1.2 V, and D=40%, approximately………………………………...…….3-19
Fig. 3-18 Steady state experimental results of the proposed dc converter at
Vg=3.0 V, Vout= 1.5 V, and D=51%, approximately…………………………...3-19
Fig. 3-19 Steady state experimental results of the proposed dc converter at
Vg=3.0 V, Vout= 2 V, and D=70%, approximately………………..……….…...3-20
Fig. 3-20 The ripple voltage of the output voltage at steady state, the upper
trace is the ripple voltage, middle trace is inductor current, and the
bottom trace is the switching clock of the proposed DC converter……….......3-20
Fig. 3-21 Line regulation performances: the responses of the buck converter
for the step change in the input voltage, alternately……………………..……3-22
Fig. 3-22 Transient responses of line regulation: (a) close-up of dynamics
when Vg step-up; (b) close-up of the dynamics when Vg step-down………......3-23
Fig. 3-23 Load regulation performances: (a) the waveforms of input and
output voltage respectively, (b) close up of the dynamics when load
current step-up, (c) close-up of the dynamics when load current
step-down………..………..………..………..………..………..………….….3-25
Fig. 3-24 Efficiency at Vg=3.3 V and Vo=1.5 V……………………………...…….3-28
Fig. 4-1. Block diagram of the low voltage integrated buck DC converter…............4-2
Fig. 4-2. Low voltage delay cell……………………..……………………………...4-3
Fig. 4-3. Low voltage current-controlled-duty ring oscillator………………………4-4
Fig. 4-4. Voltage waveforms of V1, V2, V3, V4, V5, V6, and Vpo………………….…..4-5
Fig. 4-5. Bias current Ib generator for the current-compensation………………....4-6
Fig. 4-6. Ip1 and Ip2 current generator……………………………………………......4-7
Fig. 4-7. Pseudo hyperbola current compensated circuit……………………………4-8
Fig. 4-8. Micro-power bandgap voltage reference circuit…………………………4-10
Fig. 4-9. The PMOS differential pair, basic 2-stage op amp……………..………..4-11
Fig. 4-10. The NMOS differential pair, folded 2-stage op amp……………………4-12
Fig. 4-11. Error amplifier for the low voltage buck DC converter………………4-13
Fig. 4-12. Small signal model of the low voltage buck DC converter………..……4-13
Fig. 4-13 Feedback-loop small signal frequency responses, the upper trace is
the loop gain of the buck DC converter; the bottom trace is the phase
margin of the buck DC the converter, respectively…………………………4-14
Fig. 4-14. Block diagram of the low voltage boost DC converter…………………4-15
Fig. 4-15. Small signal model of the low voltage boost DC converter……...…......4-15
Fig. 4-16. Feedback-loop small signal frequency responses, the upper trace
is the loop gain of the boost converter; the bottom trace is the phase
margin of the converter, respectively………………………………………….4-16
Fig. 4-17. Micrograph of the low voltage buck DC converter…...………………...4-17
Fig. 4-18. Micrograph of the low voltage boost DC converter………………….....4-18
Fig. 4-19. Experimental setup for the voltage-mode DC converter……...………4-18
Fig. 4-20 The steady state measurement results of the low voltage buck DC
converter with Vg=1.2 V, Vout=300 mV and Iout=30 mA; from top to
bottom, the waveforms are output voltage Vout (150 mV/div), inductor
currents IL (15 mA/div), and switching clock (600 mV/div), respectively……4-19
Fig. 4-21 The steady state measurement results of the low voltage boost DC
converter with Vg=1.2 V, Vout=2.5 V and Iout=167 mA; from top to bottom, the waveforms are output voltage Vout (1.25 V/div), inductor
currents IL (100 mA/div), and switching clock (1.25 V/div),
respectively……………………………………………………………………4-20
Fig. 4-22. Transient responses of line regulation of buck converter: (a) input
voltage of Vg and output voltage of Vo; (b) enlarged waveform of
transient response in the step-down case of Vg and output voltage of Vout;
(c) enlarged waveform of transient response in the step-up case of Vg
and output voltage of Vout (ch1, V: 600 mV/div; ch3, V: 500 mV/div)………4-22
Fig. 4-23 Transient responses of line regulation of low voltage boost
converter: (a) input voltage of Vg and output voltage of Vout (ch1 V: 1.65
V/div and ch3 V: 500 mV/div); (b) enlarged waveform of transient
response with the step-down case of Vg and output voltage of Vout (ch1
and ch3, V: 500 mV/div); (c) enlarged waveform of transient response
with the step-up case of Vg and output voltage of Vout (ch1 and ch3, V:
500 mV/div) ………………………………………………………………......4-24
Fig. 4-24 Transient responses of load regulation of low voltage buck
converter: (a) input voltage of Vg and output voltage of Vo; (b) enlarged
waveform of transient response with Ro step-down and output voltage of
Vout; (c) enlarged waveform of transient response with Ro step-up case of
the low voltage buck converter and output voltage of Vout (ch1 V: 600
mV/div; ch2, V: 120 mA/div)…………………..............................................4-26
Fig. 4-25. Transient responses of load regulation of low voltage boost
converter, when the load resistance is varies with step-up and step down
alternately. The upper trace is the waveform of load current I L (50
mA/div) and the lower trace is the waveform of the output voltage
Vout (1.65 V/div)……………………………………………………………….4-27
Fig. 4-26. Transient responses of load regulation of low voltage boost
converter: (a) close-up of transient response with the step-up case of load
current and output voltage of Vout; (b) close-up of transient response with
the step-down case of load current and output voltage of Vout.
(ch1 V: 1.65 V/div; ch2, V: 50 mA/div; H: 500 μs/div). ……………….……4-28
Fig. 4-27. The efficiency of low voltage buck DC converter at Vg=1.5 V And
Vout=1.2 V…………………………………………………………...…...……4-31
Fig. 4-28. The efficiency of low voltage boost DC converter at Vg=1.2 V And
Vout=3.3 V……………………………………………………………...….......4-31
Fig. 5-1 Basic diagram of hysteresis current-mode step-down DC converter…….5-2
Fig. 5-2 Principle of the duty generation of the hysteresis current-mode
step-down DC converter……………………………………………………......5-3
Fig. 5-3 Block diagram of hysteresis-current-controlled DC converter……......….5-4
Fig. 5-4 Active current sensing circuit for hysteresis-current-controlled
DC converter……………...…………………………………………….....……5-6
Fig. 5-5 N-type input arrangement two-stage op amp for A1…………..……….....5-8
Fig. 5-6 P-type input arrangement two-stage op amp for A2…………...…………5-9
Fig. 5-7 Sample-and-hold circuit…. ………………………………………………5-9
Fig. 5-8 Basic current comparator…... ……………………………………….....5-10
Fig. 5-9 Hysteresis current comparator………………………………..…………5-11
Fig. 5-10 Non-overlap driving circuit…………………………….……………….5-12
Fig. 5-11 Voltage-current transfer Gm circuit……………………………………5-13
Fig. 5-12 Parallel hysteresis-current-controlled step-down DC converter…...……5-15
Fig. 5 13 Chip micrograph of the current-mode step-down DC converter…...…...5-16
Fig. 5 14 Experimental setup for the current-mode of step-down DC
converter………………………………………………………………………5-16
Fig. 5-15 The experimental results of the full-cycle of the inductor current,
the current (Isenm) of the sensing circuit, and the output current (Isehm) of
the sample and hold circuit, (Horizontal scale: 10 μs/div; Vertical scale:
100 mA/div for upper trace, 50 μA /div for middle and bottom trace)……….5-17
Fig. 5-16 The experimental results of, the inductor current (curve B) and the
sensing voltage (curve A) [35]………………………………………………...5-18
Fig. 5-17 Steady-state experimental results of the current-mode converter
when load current is 500 mA (RL=2Ω), Vin=3 V, and Vref=0.5 V, the upper
trace is the waveform of the inductor current IL (100 mA/div); the middle
trace is the waveform of the output voltage Vout (1 V/div); the bottom
trace is the waveform of switching signal VDH (2.5 V/div), respectively
(Horizontal scale:10 μs/div)……………………………………………….......5-19
Fig. 5-18 Steady-state experimental results of the current-mode converter
when load current is 750 mA (RL=2Ω), Vg=3 V, and Vref=0.75 V, the
upper trace is the waveform of the output voltage Vout (1 V/div); the
middle trace is the waveform of the inductor current IL (100 mA/div); the
bottom trace is the waveform of switching signal VDH (2.5 V/div),
respectively (Horizontal scale: 10 μs/div)………………………………….....5-20
Fig. 5-19 Light load regulation experimental results of the current-mode
converter, when the load current is 100 mA (RL=10Ω) and
Vout=1 V (100 mV/div)………………………………………………………...5-20
Fig. 5-20 Heavy load regulation experimental results of the test chip, when
the load current is 667 mA (RL=1.5Ω), Vout=1 V (100 mV/div).……………5-21
Fig. 5-21 Experimental results of the proposed parallel hysteresis-current-
controlled DC-DC converter with Vout=1.3 V; from top to bottom, the
waveforms are inductor currents IL1, IL2 (200mA/div), and output
voltage Vout (1 V/div), respectively……………………………………….…...5-22
Fig. 5-22 The experimental results of the proposed parallel hysteresis-current
-controlled DC-DC converter with Vout=1.7 V; from top to bottom, the
waveforms are inductor currents IL1, IL2,(200 mA/div) and output
voltage Vout (1 V/div), respectively………………..…………………............5-22
Fig. 5-23 Efficiency at Vout=1.5 V, VDD=3.0 V (upper trace); VDD=2.6 V
(lower trace)………….……..……..……..……..……..……..……..…………5-23

List of Tables
Table 2-1 Features of current-mode control with different sensing
techniques………………………………………………………………….2-30
Table 3-1. Overall performances of voltage-mode DC converter………………….3-28
Table 4-1. Component Values of both buck and boost converter………………….4-30
Table 4-2. Overall performances of the low voltage buck converter………………4-30
Table 4-3. Overall performances of the low voltage boost converter…………......4-30
Table 5-1 Specification of the proposed hysteresis current-mode step-down
DC converter.………………………………………...…………………….5-23
References

[1]Ralph K. III and Wentai Liu, Emerging Technologies: Design Low Power Digital Systems, Kluwer Academic Punlishers, Norwell, Massachusetts, USA, 1998.
[2]Gary Yeap, Practical Low Power Digital VLSI Design, Kluwer Academic Punlishers, Norwell, Massachusetts, USA, 1998.
[3]Bruno Murari, Franco Bertotti, and Giovanni A. Vignola, Smart Power ICs Technologies and Applications, Springer-Verlag Berlin Heidelberg, New York, USA, 1995.
[4]Robert W. Erickson, Fundamental of Power Electronics, Kluwer Academic Punlishers, Norwell, Massachusetts, USA, 1999.
[5]Muhammad H. Rashid, Power Electronics: Circuits, Devices, and Applications, 3e, Pearson Prentice Hall, New Jersey, USA, 2004.
[6]Ramy Tantawy and Elizabeth J. Brauer, “Performance evaluation of CMOS low drop-out voltage regulators,” IEEE 47th International Midwest Symposium on Circuits and Systems, vol. 1, pp. 141-144, July 25-28, 2004.
[7]Pedro M. Alicea-Morales, Carlos J. Ortiz-Villanueva, Raul Perez, Rogelio Palomera-Garcia, and Manuel Jimenez, “Design of an adjustable, low voltage, low dropout regulator,” The Fifth IEEE International Caracas Conference on Devices, Circuits and Systems, Nov. 3-5, 2004, vol. 1, pp. 289-292.
[8]Hoi Lee, Philip K. T. Mok, and Ka Nang Leung, “Design of low-power analog drivers based on slew-rate enhancement circuits for CMOS low-dropout regulators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 9, pp. 563-567, Sept. 2005.
[9]Shan Yuan and Bruce C. Kim, “Low Dropout Voltage Regulator for Wireless Applications,” IEEE 33rd Annual Power Electronics Specialists Conference, vol. 2, pp. 421-424, June 23-27, 2002.
[10]Hoi Lee, Philip K. T. Mok, and Ka Nang Leung, “Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 9, pp. 563-567, Sept. 2005.
[11]Vishal Gupta, Gabriel A. Rincdn-Mora, and Prasun Raho, “Analysis and design of monolithic, high PSR, linear regulators for SoC applications,” 2004 International SOC Conference, pp. 311-315, Sept. 12-15, 2004.
[12]Yen-Shyung Shyu, “Low operating current analog integrated circuits,” Ph.D. dissertation, National Chiao Tung University, Hsinchu, Taiwan, June 2002.
[13]Siew-Chong Tan, Y. M. Lai, Martin K. H. Cheung, and Chi K. Tse, “A pulse-width-modulation based sliding mode controller for buck converters,” IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, vol. 5, pp. 3647-3653, June 20-25, 2004.
[14]Zheren Lai and Keyue Ma Smedley, “A general constant-frequency pulse-width modulator and its applications,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 45, no. 4, pp. 386-396, April, 1998.
[15]Wu, Albert M., Xiao, Jinwen, Markovic Dejan, and Sanders, S. R., “Digital PWM control: application in voltage regulation modules,” IEEE 30th Annual Power Electronics Specialists Conference, Charleston, vol. 1, pp. 77-83, June 27-July 1, 1999.
[16]Tso, Chung-Hsien and Wu, Jiin-Chuan, “An integrated digital PWM DC/DC converter using proportional current feedback,” IEEE International Symposium on Circuits and Systems, Sydney, Australia, vol. 3, no. 2, pp. 65-68, May 6-9, 2001.
[17]T. Yokoyama and A. Kawamura, “Disturbance observer based fully digital controlled PWM inverter for CVCF operation,” IEEE Transactions on Power Electronics, vol. 9, no. 5, pp. 473-480, Sept. 1994.
[18]Li Peng, Xuejuan Kong, Yong Kang, and Jian Chen, “A novel PWM technique in digital control and its application to an improved DC/DC converter,” 2001 IEEE 32nd Annual Power Electronics Specialists Conference, Vancouver, Canada, vol. 1, pp. 254-259, June 17-21, 2001.
[19]Benjamin J. Patella, Aleksandar Prodic, Art Zirger, and Dragan Maksimovic, “High-Frequency Digital PWM Controller IC for DC-DC Converters,” IEEE Transaction on power electronics, vol. 18, no. 1, pp. 438-446, Jan. 2003.
[20]Dongsheng Ma, Wing-Hung Ki, and Chi-Ying Tsui, An Integrated One-Cycle Control Buck Converter With Adaptive Output and Dual Loops for Output Error Correction, IEEE J. of Solid-State Circuits, vol. 39, no. 1, pp. 140-149, Jan. 2004.
[21]Wang Yong and Shen Songhua, “Research on One-Cycle Control for Switching Converters,” The 5th World Congress on Intelligent Control and Automation, Hangzhou, pp.74-77, June 15-19, 2004.
[22]Smedley K. M. and Cuk, S., “One-cycle control of switching converters,” IEEE Transactions on Power Electronics, vol. 10, no. 6, pp. 625-633, Nov. 1995.
[23]Haifei Dengl, Nick Sun, Xiaoming Duan, Yan Ma, Alex Q. Huang and Dan Chen, “Design of a monolithic low voltage high efficiency boost DC-DC converter ASIC based on 0.5/spl mu/m CMOS process,” The 16th International Symposium on Power Semiconductor Devices and ICs, 2004, Kitakyushu, JAPAN, pp. 169-172, May 24-27, 2004.
[24]P. Midya, P. T. Krein and M. F. Greuel,” Sensorless current mode control-an observer-based technique for dc-dc converters,” IEEE Transactions on Power Electronics, vol. 16, no. 4, pp. 522-526, July 2001.
[25]Yueh-Ru Yang and Rong-Tai Chen, ”An Autotransformer-based VRM with Input Current Shaper,” 2006 Taiwan Power Electronics Conference & Exhibition, Yunlin, Taiwan, pp. 667-673, Sept. 8-9, 2006.
[26]T. A. Smith, S. Dimitrijev, H. B. Harrison,” Controlling a dc-dc converter by using the power MOSFET as a voltage controlled resistor,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 47, no. 3, pp. 357-362, March 2000.
[27]X. Zhou, M. Donati, L. Amoroso, F. C. Lee,” Improved light-load efficiency for synchronous rectifier voltage regulator module,” IEEE Transactions on Power Electronics, vol. 15, no. 5, pp. 826-834, Sept. 2000.
[28]Ding Ge and Zhiliang Chen, “On-Chip Boost DC-DC Converter in Color OLED Driver & Controller ICs for Mobile Application,” 2005 6th International Conference On ASIC, vol. 1, pp. 487-490, Oct. 24-27, 2005.
[29]Victor Anunciada and Manuel M. Silva, “New constant-frequency current-mode control for power converters,” Transactions on Industrial Electronics, vol. 37, no. 4, pp. 323-325, Aug. 1990.
[30]M. Corsi,” Current sensing schemes for use in BiCMOS integrated circuits,” 1996 Bipolar/BiCMOS Circuits and Technology Meeting, New York, USA, 1995, pp.55-57.
[31]Wing-Hung KI,” Current sensing technique using MOS transistors scaling with matched bipolar current sources, U. S. Patent 5,757,174, May 26, 1998.
[32]F. You, S. H. K. Embabi, J. F. Duque-Carrillo, E. Sanchez-Sinencio,” An improved tail current source for low voltage applications,” IEEE Journal of Solid-State Circuits, vol. 32, no. 8, pp. 1173-1180, Aug. 1997.
[33]Cheung Fai Lee and P. K. T. Mok, ”On-chip current sensing technique for CMOS monolithic switch-mode power converter,” 2002 IEEE International Symposium on Circuits and Systems, pp. vol.5, 265-268, May 26-29, 2002.
[34]Cheung Fai Lee and Philip K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter With On-Chip Current-Sensing Technique,” IEEE Journal of 0Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[35]Cheng-Hui Chang and R. C. Chang, “A novel current sensing circuit for a current-mode control CMOS DC-DC buck converter,” IEEE VLSI-TSA International Symposium on VLSI Design Automation and Test, pp. 120-123, April 27-29, 2005.
[36]Chi Yat Leung, K. T. Philip, Ka Nang Leung, and Mansun Chan, “An Integrated CMOS Current-Sensing Circuit for Low-Voltage Current-Mode Buck Regulator,” IEEE Transactions on Circuits and Systems–II: Express Brief, vol. 52, no. 7, pp. 394-397, July 2005.
[37]Chi Yat Leung, Philip K. T. Mok, Ka Nang Leung, “A 1.2-V Buck Converter With A Novel On-Chip Low-Voltage Current-Sensing Scheme, “ 2004 International Symposium on Circuits and Systems, Vancouver, Canada, vol. 5, pp. V824-V827, May 23-26, 2004.
[38]Hung-Chi Lee, Kuo-Tai Chang, Ke-Horng Chen, and Wen Tsao Chen, ” Power Saving of a Dynamic Width Controller for a Monolithic Current-Mode CMOS DC-DC Converter,” 2005 Fifth International Workshop on System-on-Chip for Real-Time Applications, Banff, Alberta, Canada, pp. 352-357, 20-24 July 2005.
[39]Chi Yat Leung, Philip K. Mok, and Ka Nang Leung, “A 1-V Integrated Current-Mode Boost Converter in Standard 3.3/5-V CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 2265-2274, Nov. 2005.
[40]Ph. Givelin, M. Bafleur, E. Tournier, Th. Laopoulos, S. Siskos, “Application of a CMOS current mode approach to on-chip current sensing in smart power circuits,” IEE Proceedings-Circuits, Devices and Systems, vol. 142, no. 6, pp.357-363, Dec. 1995.
[41]Jiann-Jong Chen, Juing-Huei Su, Hung Yih Lin, Chung-Chieh Chang, Yu Lee, Tzu-Chiang Chen, Hung-Chan Wang, Kang-Shuo Chang, Pu-Sung Lin, “Integrated current sensing circuits suitable for step-down DC-DC converters,” Electronics Letters, vol. 40, no. 3, pp. 200-202, Feb. 2004.
[42]Jiann-Jong Chen, Juing-Huei Su, Hung Yih Lin, Chung-Chieh Chang, Yu Lee, Tzu-Chiang Chen, Hung-Chan Wang, Kang-Shuo Chang, Pu-Sung Lin, “Integrated current sensing circuit suitable for step-down dc-dc converters,” IEEE 35th Annual Power Electronics Specialists Conference, vol. 2, pp.1140-1142, June 20-25, 2004.
[43]Olivier Trescases, Zdravko Luki´c, Wai Tung Ng and Aleksandar Prodi´c, “A Low-Power Mixed-Signal Current-Mode DC-DC Converter Using a One-Bit ΔΣ DAC,” 2006 Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, pp. 700-704, March 19-23, 2006.
[44]John P. Uyemura, Introduction to VLSI Circuits and Systems, John Wiley & Sons, Inc., USA.
[45]Marian K. Zamierczuk, Robert C. Cravens II, and Joseph P. Harrington, “Closed-loop input impedance of PWM buck-derived DC-DC converters,” 1994 IEEE International Symposium on Circuits and Systems, vol. 6, pp. 61-64, May 30-June 2, 1994.
[46]Jian Sun, “Control Design Consideration for Voltage Regulator Modules,” IEICE/IEEE INTELEC’03, pp. 84-91, Oct. 19-23, 2003.
[47]Ingle, Proakis, “Digital Signal Processing: Using MATLAB,” Thomson Learning, Inc., Singapore.
[48]Athony J. Stratakos, Seth R. Sanders, and Robet W. Brodersen, “A Low-Voltage CMOS DC-DC Converter for a Portable Battery-Operated System,” IEEE Power Electronics Specialist Conference, pp. 619-626, June 20-25, 1994.
[49]Jiann-Jong Chen, Yuh-Shyan Hwang, Juing-Huei Su, and Wei-Chung Shih, “New Current Sensing Circuit for Hysteresis-Current-Controlled Buck Converters,” The Sixth IEEE International Conference on Power Electronics and Drive Systems, Kuala Lumpur, Malaysia, pp.452-455, Nov. 28- Dec. 1 2005.
[50]L. Dixon, Average current mode control of switching power supplies, in Unitrode Power Supply Design Seminar Handbook (SEM-700), pp.5-1 to 5-14, Unitrode Corporation, MA, 1990.
[51]B. Carsten,” Current mode control for high frequency switchmode,” Power conversion and Intelligent Motion (PCIM), pp. 61-64, April 1986.
[52]D. O’Sullivan, B. Spruyt, and A. Crausaz, ”PWM conductance control,” IEEE Power Electron. Spec. Conf. Record 1988, pp.351-359, June 20-25, 1998.
[53]Kwok-Wai Ma, and Yim-Shu Lee, ”Technique for sensing inductor and dc output currents of PWM dc-dc converter,” IEEE Transactions On Power Electron., vol. 9, no. 3, pp.346-354, May 1994.
[54]N. Keskar and G. A. Rincon-Mora,, “Self-stabilizing, integrated, hysteretic boost DC–DC converter,” The 30th Annual Conference of IEEE Industrial Electronics Society, vol. 1, pp. 586-591, Nov. 2-6, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top