|
[1] A. Lee,“Centrohermitian and skew- centrohermitian matrices,” Linear Algebra and its Applications , vol. 29 ,pp.205-210, 1980 [2] Yuh-Huu Chang , Shih-Hao Tung and Pel-Wen Hung “Transform Subspace Rotation Approach to Signal Parameter Estimation” CHUNG YUAN JOURNAL ,Vol. 30, No. 1, March, 2002 [3] R. Roy and T. Kailath. “ESPRIT- Estimation of Signal Parameters via Rotational Invariance Techniques.” IEEE Trans. Acoust., Speech, Signal Process., vol.ASSP-37, pp. 984-995, July 1989. [4] M. Haardt and JA. Nossek. “Unitary ESPRIT:How to Obtain Increased Estimation Accuracy with a Reduced Computational Burden.” IEEE Trans. On Signal Processing, Vol. 43, No.5 pp. 1232-1242 May 1995 [5] G. H. Golub and C. F. Van Loan . Matrix computations. Baltimore. MD:Johns Hopkins University Press. 1984 [6] T. J. Shan, M. Wax, and T. Kailath. “On Spatial Smoothing for Direction-of-Arrival Estimation of Coherent Signals” IEEE Trans. Acoust., Speech, Signal Process., vol.ASSP-33. pp. 806-811, Aug 1985. [7] M. Haardt ,M. D. Zoltowski ,C. P. Methews and JA. Nossek “2D Unitary ESPRIT for Efficient 2D Parameter Estimation.” IEEE Trans. Acoust., Speech, Signal Process Vol. 3, pp. 2096-2099, May 1995 [8] Krekel, P. F. C.;Deprettere, E. F. “A two-dimensional version of the matrix pencil method to solve the DOA problem,” European Conference on Circuit Theory and Design, 1989,435-439 [9] A.Paulraj, R. Roy and T. Kailath. “Extensions to the subspace invariance approach to signal parameter estimation,” In Proc. Int. Conf. On Acoustics, Speech and Sig. Proc, Japan,1986. [10] A. Paulraj, R. Roy and T. Kailath, “A subspace rotation approach to signal parameter estimation”IEEE Proceedings , vol. 74, No.7, July 1986. [11]G. Xu, S. Sliverstein, R. Roy and T. Kailath, “Beamspace ESPRIT,’IEEE Transactions on Signal Processing, vol. 42, Feb. 1994, 349-356. [12]M. Viberg, B. Ottersten, “Sensor array processing based on subspace fitting”, IEEE Trans. Acoust., Speech, Signal Processing, vol.39, May 1991, 1110-1121.
|