跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:嚴聖翔
研究生(外文):Sheng-Hsiang Yen
論文名稱:應用於超寬頻系統之前端電路設計
論文名稱(外文):Design of Front-End Circuit for Ultra-Wideband Applications
指導教授:陳淳杰
指導教授(外文):Chun-Chieh Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:88
中文關鍵詞:前端電路超寬頻系統低雜訊放大器混頻器低功率
外文關鍵詞:LNAMixerLow powerFront-end circuitUWB
相關次數:
  • 被引用被引用:3
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,主要討論如何設計一個應用於超寬頻系統的射頻前端電路,並提出一種結合被動元件組抗匹配與共閘極放大器所設計的新式低功率低雜訊放大器,主動式降頻混頻器,以及兩種不同組合架構的射頻前端電路,並使用TSMC 0.18um RF製程設計與實現。
本篇論文提出兩個低雜訊放大器──混合式共閘極低雜訊放大器以及電容交錯式共閘極低雜訊放大器,其分別應用了兩種增加gm的方法,電感連接式以及電容交錯式,使共閘極放大器的效能提升,並且改善了共閘極放大器的缺點。三階梯型結構被動元件的阻抗匹配可以提供一個寬頻的阻抗匹配,補償增益頻寬。混合式共閘極低雜訊放大器的模擬結果為功率增益15.2dB,雜訊指數 3.8dB,功率消耗為3.24mW;電容交錯式共閘極低雜訊放大器的模擬結果為功率增益16.8dB,雜訊指數 3.2dB,功率消耗為8.75mW。
主動式降頻混頻器可提供轉換增益以及不錯的雜訊效能,本論文設計了一個以柴比雪夫濾波器結構作為寬頻輸入阻抗匹配的雙平衡式混頻器,它的轉換增益為11.6dB,雜訊指數為9.36dB,線性度IIP3 為 -0.67dBm,功率消耗為7.2mW。
最後,針對由低雜訊放大器以及混頻器所組成的射頻前端電路設計了兩組完整電路。第一個電路中,移除阻抗匹配可能會造成一些問題,像是較差的雜訊效能,以及比較低的轉換增益,模擬結果為轉換增益19.5dB,雜訊指數在4GHz時為7.94dB,線性度IIP3為-16.62dBm,消耗功率6.84mW;第二個電路我們在低雜訊放大器以及混頻器中加入匹配電路,模擬結果為轉換增益28.5dB,雜訊指數於4GHz時為6.81dB,線性度IIP3為-14.25dBm,功率消耗為26.76mW。
In this thesis, we will discuss the design of front-end circuit for ultra-wideband applications. A novel low power LNA which combines common-gate amplifier with reactive matching network, active downconversion mixer, and two front-end circuits are presented. The front-end circuits are designed and implemented in TSMC 0.18um RF process.
Mixed common-gate LNA and cross-coupled common-gate LNA use gm-boosting methods such as inductor-terminated and capacitor cross-coupled to increase power gain, reduce noise figure, and enhance bandwidth. These two gm-boosting methods improve the performance of common-gate LNA. Third-order ladder passive matching networks are placed in circuits skillfully to get wideband matching and enhance bandwidth simultaneously. The simulation results of mixed common-gate LNA include a power gain of 15.2 dB, noise figure of 3.8dB, and power consumption of 3.24mW. The simulation results of cross-coupled common-gate LNA include a power gain of 16.8 dB, noise figure of 3.2dB, and power consumption of 8.75mW.
Active downconversion mixer provides conversion gain and better noise performance. In our design, a double-balanced mixer with reactive input matching network is presented. The input matching network is embedded in the Chebyshev filter structure. The simulated conversion gain and noise figure of wideband double-balanced mixer are 11.6dB and 9.36 dB, input-referred IP3 of -0.67dBm, and power consumption of 7.2mW.
The front-end circuits are combination of LNA and mixer. In the first front-end circuit, removing the input matching network of single-balanced mixer and output matching buffer of mixed common-gate LNA may cause worse noise performance and lower conversion gain. The simulation results include a conversion gain of 19.5 dB, noise figure of 7.94dB at 4GHz, input-referred IP3 of -16.62dBm, and power consumption of 6.84mW. In the second front-end circuit, a matching network connected between LNA and Mixer to improve performance of front-end circuit. The simulation results include a conversion gain of 28.5 dB, noise figure of 6.81dB at 4GHz, input-referred IP3 of -14.25dBm, and power consumption of 26.76mW.
Table of Contents

Abstract (Chinese) i
Abstract (English) iii
Acknowledgments v
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 1
Chapter 2 Ultra-Wideband System 3
2.1 Introduction 3
2.2 History 5
2.3 DS-UWB 7
2.4 MB-OFDM 8
2.5 Summary 10
Chapter 3 Two-Port Networks 12
3.1 Introduction 12
3.2 S-Parameter 12
3.3 Noise 15
3.3.1 Thermal Noise 15
3.3.2 Flicker Noise 17
3.3.3 Mos Noise Model 17
3.3.4 Noise in Two-Port Systems 18
3.4 Linearity 20
3.4.1 Intermodulation 21
3.4.2 1db Compression Point 23
3.4.3 3rd Order Intercept Point 23
3.5 Cascaded Systems 24
3.5.1 Noise Figure of Cascaded Systems 24
3.5.2 Linearity of Cascaded Systems 25
Chapter 4 Low Noise Amplifier 27
4.1 Introduction 27
4.2 Topologies of LNA 27
4.3 Mixed Common-Gate LNA 29
4.3.1 Design Concept 29
4.3.2 Effective Gm 30
4.3.3 Input Matching 32
4.3.4 Circuit Description of Mixed Common-Gate LNA 33
4.3.5 Simulation Results 36
4.3.6 Experimental Results 40
4.3.7 Discussions 43
4.4 Cross-Coupled Common-Gate LNA 44
4.4.1 gm-Boosting Method 44
4.4.2 Circuit Description of Cross-Coupled CGLNA 46
4.4.3 Simulation Results 47
4.5 Summary 50
Chapter 5 Mixer 51
5.1 General Considerations 52
5.2 Single-Balanced and Double-Balanced Mixer 53
5.3 Input Matching 57
5.4 Circuit Description of Wideband Double-Balanced Mixer 59
5.5 Simulation Results 60
Chapter 6 Front-End Circuits 63
6.1 Circuit 1: Mixed Common-Gate LNA + Single-Balanced Mixer 63
6.2 Circuit 2: Cross-Coupled Common-Gate LNA + Double-Balanced
Mixer 67
6.3 Summary 71
Chapter 7 Conclusions 72
Reference 74
Vita 77

List of Figures

Fig 2.1 UWB applications for home media networking 4
Fig 2.2 Standards of 802.15 4
Fig 2.3 WPAN, WLAN, and cellular networks: typical link ranges 5
Fig 2.4 UWB spectral mask and FCC Part 15 limits 6
Fig 2.5 Data transmit in DS-UWB system 7
Fig 2.6 Band groups of DS-UWB 7
Fig 2.7 Blocks of OFDM receiver 8
Fig 2.8 Band groups of MB-OFDM 9
Fig 2.9 Frequency-hopping sequences of MB-OFDM 10
Fig 3.1 Two-port Network 13
Fig 3.2 S-parameter port variable definitions 13
Fig 3.3 Thermal noise of a resistor 15
Fig 3.4 Thermal noise of a MOSFET 16
Fig 3.5 MOS noise model 17
Fig 3.6 (a) Noisy two-port 18
Fig 3.6 (b) Equivalent model 18
Fig 3.7 Frequency locations of distortion terms 22
Fig 3.8 Cascaded systems for noise figure computation 24
Fig 3.9 Cascaded systems for input intercept calculation 25
Fig 4.1 Topology of LNA 28
Fig 4.2 Wideband LNA with Chebychev input matching network 29
Fig 4.3 Design concept of mixed common-gate LNA 30
Fig 4.4 (a) Inductor-terminated common-gate input stage 31
Fig 4.4 (b) Small signal of inductor-terminated common-gate input stage 31
Fig 4.5 Inserted passive matching network between source and
amplifier stage 32
Fig 4.6 Third-order ladder network 32
Fig 4.7 Input stage with matching network 34
Fig 4.8 The schematic of mixed common-gate LNA 34
Fig 4.9 Small signal model of propose LNA 35
Fig 4.10 Die photo of the mixed common-gate LNA 36
Fig 4.11 Simulated S21 37
Fig 4.12 Simulated noise figure 37
Fig 4.13 Simulated S11 38
Fig 4.14 Simulated S22 38
Fig 4.15 Simulated P1dB 39
Fig 4.16 Measured environment 40
Fig 4.17 Measured S11 41
Fig 4.18 Measured S21 41
Fig 4.19 Measured S21 42
Fig 4.20 Measured S12 42
Fig 4.21 Basic CGLNA stage with gm-boosting feedback amplifier 44
Fig 4.22 Capacitor cross coupling in a differential CGLNA 45
Fig 4.23 Schematic of Cross-coupled CGLNA 46
Fig 4.24 Layout of Cross-coupled CGLNA 47
Fig 4.25 Simulated S21 48
Fig 4.26 Simulated NF 48
Fig 4.27 Simulated S11 and S22 49
Fig 4.28 Simulated 1dB compression point 49
Fig 5.1 Symbol of mixer 51
Fig 5.2 Simple switch used as mixer 52
Fig 5.3 Desire RF signal and image signal 53
Fig 5.4 (a) Single-balanced mixer 54
Fig 5.4 (b) Double-balanced mixer 54
Fig 5.5 Simple mixers with differential outputs 54
Fig 5.6 Double-balance mixer 56
Fig 5.7 Input matching network of double-balanced mixer 58
Fig 5.8 Equivalent circuit of Fig.5.7 58
Fig 5.9 Wideband double-balanced Mixer 59
Fig 5.10 Simulated S11 and S22 60
Fig 5.11 Simulated conversion gain 61
Fig 5.12 Simulated SSB NF 61
Fig 5.13 Simulated IIP3 62
Fig 6.1 Receiver architecture 63
Fig 6.2 Front-end circuit (Mixed Common-Gate LNA + Single-Balanced
Mixer) 64
Fig 6.3 Simulated S11 and S22 65
Fig 6.4 Simulated conversion gain 65
Fig 6.5 Simulated SSB NF 66
Fig 6.6 Simulated input referred IP3 66
Fig 6.7 Front-end circuit (Cross-Coupled Common-Gate LNA +
Double-Balanced Mixer) 68
Fig 6.8. Simulated S11 and S22 69
Fig 6.9 Simulated conversion gain 69
Fig 6.10 Simulated SSB NF 70
Fig 6.11 Simulated input referred IP3 70

List of Tables

Table 2.1 Comparison of wireless networks 5
Table 2.2 Power definition of UWB system 6
Table 2.3 Bands of MB-OFDM 9
Table 2.4 Comparison of narrow band system and UWB system 10
Table 2.5 Specifications of two proposals 11
Table 4.1 Summary of the simulation results 39
Table 4.2 Summary of the measurement results 43
Table 4.3 Summary of the simulation results 50
Table 4.4 Performance comparison 50
Table 5.1 Summary of the simulation results 62
Table 6.1 Summary of the simulation results 67
Table 6.2 Summary of the simulation results 71
Table 6.3 Performance comparison 71
[1]El-Masry, E. I. and W. Jie. “CMOS micropower universal log-domain biquad,” IEEE Transactions 46(3): 389-392 1999.

[2] FCC, “Final Rule of the Federal Communications Commission, 47 CFR Part 15, Sec. 503,” Federal Register, vol. 67, no. 95, May 2002.

[3]http://www.ieee802.org/15/pub/TG3a.html

[4] Steve Stroh, Ultra-Wideband Multimedia Unplugged, IEEE Spectrum, September 2003.

[5] Roy, S.; Foerster, J.R.; Somayazulu, V.S.; Leeper, D.G. “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proceedings of the IEEE, Vol.92, Iss.2, Feb 2004 Pages: 295- 311.

[6]McCorkle, J. “Ultra wide bandwidth (UWB): gigabit wireless communications for battery operated consumer applications” VLSI Circuits 2005, Digest of Technical Papers. 2005 Symposium on, Vol., Iss., 16-18 June 2005 Pages: 6- 9.

[7]http://grouper.ieee.org/groups/802/15/pub/2003/Jul03/03267r5P802_15_TG3a- Multi-band-OFDM-CFP-Presentation.ppt

[8]Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.

[9]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, U.K: Cambridge Univ. Press, 1998.

[10]Behzad Razavi, RF Microelectornics, Prentice Hall PTR Prentice-Hall, Inc, 1998.

[11]A. Ismail and A. A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” Solid-State Circuits, IEEE Journal of, vol. 39, pp. 2269-2277, 2004.
[12]A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers,” Solid-State Circuits, IEEE Journal of, vol. 39, pp. 2259-2268, 2004.

[13]N. Shiramizu, T. Masuda, M. Tanabe, and K. Washio, “A 3-10 GHz bandwidth low-noise and low-power amplifier for full-band UWB communications in 0.25μm SiGe BiCMOS technology,” Radio Frequency Integrated Circuits (RFIC) Symp., June 2005. pp. 39 – 42.

[14]B. Analui and A. Hajimiri, “Bandwidth enhancement for transimpedance amplifiers,” Solid-State Circuits, IEEE Journal of, Vol.39, Iss.8, Aug. 2004 Pages: 1263- 1270.

[15]W. Chen, Theory and Design of Broadband Matching Networks, Oxford:Pergamon Press, 1976

[16]D. J. Allstot, L. Xiaoyong, and S. Shekhar, “Design considerations for CMOS low-noise amplifiers,” Radio Frequency Integrated Circuits (RFIC) Symp. , 2004. pp. 97-100

[17]K. Chang-Wan, K. Min-Suk, A. Phan Tuan, K. Hoon-Tae, and L. Sang-Gug, “An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system,” Solid-State Circuits, IEEE Journal of, vol. 40, pp. 544-547, 2005.

[18]C. P. Chang and H. R. Chuang, “0.18μm 3-6 GHz CMOS broadband LNA for UWB radio,” Electronics Letters, vol. 41, pp. 696-698, 2005.

[19]Chun-Chieh Chen, Sheng-Hsiang Yen, Zhe-Yang Huang, Meng-Ping Chen, Yeh-Tai Hung, “A Low-Power and Low-Noise Amplifier for 3-5GHz UWB Applications, ” The 2006 IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS2006), December 12-15, 2006, Tottori, Japan.

[20] Upadhyaya, P.; Rajashekharaiah, M.; Deukhyoun Heo; “A 5.6-GHz CMOS doubly balanced sub-harmonic mixer for direct conversion –zero IF receiver,” Microelectronics and Electron Devices, 2004 IEEE Workshop on, 2004 Pages: 129 -130

[21] Xuezhen Wang and Robert Weber, “A Novel Low Power Low Voltage LNA and Mixer for WLAN IEEE 802.11A Standard,” 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 8-10 Sept. 2004 Page(s):231 – 234

[22] Yuan-Kai Chu; Che-Hong Liao; Huey-Ru Chuang, “5.7 GHz 0.18um CMOS gain-controlled LNA and mixer for 802.11a WLAN applications,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2003, 8-10 June 2003 Page(s):221 – 224
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top