跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/12 13:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳瑋倫
研究生(外文):Wei-Lun Wu
論文名稱:以T-S模糊為基礎之太陽能發電最大功率追蹤
論文名稱(外文):The Maximum Power Tracking Control for Photovoltaic Array Generators Based on T-S Fuzzy Approach
指導教授:練光祐
指導教授(外文):Kuang-Yow Lian
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:71
中文關鍵詞:VDVsT-S模糊方法太陽能發電最大功率追蹤Lyapunov方法DS1103控制卡線性矩陣不等式
外文關鍵詞:Solar powerT-S fuzzy modelLMIsLyapunovVDVsMPPTDS1103 control board
相關次數:
  • 被引用被引用:4
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在太陽能微型電網架構中包含太陽能板、電源轉換器與蓄電池。本篇論文提出以T-S模糊方法去實現太陽能發電系統之最大功率追蹤。而T-S模糊模型可以利用模糊規則將非線性系統拆解成數個線性子系統。而且,穩性定條件則利用Lyapunov方法求得,也就是將控制問題轉換成解線性矩陣不等式。首先利用數值模擬我們可以得到滿意的效果。不過,我們更致力在實作方面的實現。最後,我們建構太陽能發電實驗架構,其中包含SP75太陽能板模組、電源轉換器、類比數位轉換卡(DS1103)與即時介面(dSPACE)。然而,實驗結果達到驗證的效果。
A micro-grid power system consisting of a photovoltaic (PV) array
panel, DC/DC converter, and a battery is considered in this
research. This thesis proposes a T-S fuzzy method to deal with the
power tracking problem of the power generating systems. The T-S
fuzzy model can represent nonlinear systems into fuzzy rules with
consequent part as local linear subsystems. Then, the stability
analysis is carried out using Lyapunov direct method where as the
control problem is formulated into the feasibility of solving a
set of linear matrix inequality (LMIs). The satisfactory
performance is firstly shown by the numerical simulation result.
Then, we focus on the experiment on the hardware realization. To
this end, we establish an experiment environment for the solar
power system, which includes an SP75 solar module, a DC/DC buck
converter, an A/D DS1103 card, and a real-time interface, dSPACE.
Then, the experiment is carried to verify the proposed scheme.
Contents
Abstract in Chinese I
Contents in Chinese II
Abstract in English V
Acknowledgement in Chinese VI
Contents VII
List of Figures X
List of Tables XIII
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Model of Photovoltaic Cells 4
2.1 Power generating dynamics of Solar cell . . . . . . . . . . . . . . . . . . . . 4
2.2 Category of Solar Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Four generations of development [5] . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Third . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.4 Fourth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Photovoltaic Array Power Generating System Modelling . . . . . . . . . . 8
3 Analyzing Solar Power Generation based on T-S Fuzzy 14
3.1 Basic T-S Fuzzy Tracking Control . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Specifying VDVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Experiment Setup 28
4.1 Solar cell[13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 DS1103 [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Measurement of PV array output current and voltage acquisition . . . . . . 30
4.4 MOSFET Gate Driver [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Current Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Conventional PWM Buck Converter . . . . . . . . . . . . . . . . . . . . . . 31
4.6.1 Inductor Design [16] . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6.2 Output Capacitor Design [16] . . . . . . . . . . . . . . . . . . . . . 33
4.7 RCD Snubber [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Incremental Conductance Method [18][19][20] . . . . . . . . . . . . . . . . 35
4.9 Experimental Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.11 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.12 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Conclusion and Future Works 52
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A Photographs of Experiment 55
Reference 53
Appendix A 55
List of Figures
2.1 Solar cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Semiconductor band structure . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Solar cell generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Category of solar cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 PV cell Equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Circuit diagram of a photovoltaic generator . . . . . . . . . . . . . . . . . . 9
2.7 PV array Equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 I-V curves of PV array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9 P-V curves of PV array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.10 The system structure of a PV array . . . . . . . . . . . . . . . . . . . . . . 11
2.11 Buck converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.12 The operation diagram on MOSFET switch on . . . . . . . . . . . . . . . . 11
2.13 The operation diagram on MOSFET switch off . . . . . . . . . . . . . . . . 11
3.1 Maximum power point diagram . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 System states response diagram . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Power regulation diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Performance index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Battery bank voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Insolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 System states response diagram on vary insolation . . . . . . . . . . . . . . 25
3.8 Power tracking diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9 PV output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10 Battery bank voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11 Performance index on vary insolation . . . . . . . . . . . . . . . . . . . . . 27
4.1 Experimental environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The DS1103 hardware architecture. . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Circuit of the MOSFET gate driver. . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Inductor current waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Inductor current and output voltage ripple. . . . . . . . . . . . . . . . . . . 34
4.6 RCD snubber circuit when M turns off. . . . . . . . . . . . . . . . . . . . . 35
4.7 RCD snubber circuit when M turns on. . . . . . . . . . . . . . . . . . . . . 35
4.8 Incremental conductance method diagram . . . . . . . . . . . . . . . . . . 36
4.9 Incremental conductance method flow chart . . . . . . . . . . . . . . . . . 37
4.10 Real Time Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.11 Matlab interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.12 Control Desk Developer Version . . . . . . . . . . . . . . . . . . . . . . . . 38
4.13 PV array output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.14 Virtual desired voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.15 Inductance current of buck converter . . . . . . . . . . . . . . . . . . . . . 40
4.16 Virtual desired inductance current . . . . . . . . . . . . . . . . . . . . . . . 40
4.17 Buck converter output voltage . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.18 Virtual desired output voltage . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.19 Duty ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.20 Duty ratio shown on oscilloscope . . . . . . . . . . . . . . . . . . . . . . . 41
4.21 PV array output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.22 PV array output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.23 PV array output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.24 Virtual desired voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.25 Inductance current of buck converter . . . . . . . . . . . . . . . . . . . . . 42
4.26 Virtual desired inductance current . . . . . . . . . . . . . . . . . . . . . . . 42
4.27 Buck converter output voltage . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.28 Virtual desired output voltage . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.29 Duty ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.30 Duty ratio shown on oscilloscope . . . . . . . . . . . . . . . . . . . . . . . 43
4.31 PV array output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.32 PV array output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.33 PV array output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.34 Virtual desired voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.35 Inductance current of buck converter . . . . . . . . . . . . . . . . . . . . . 46
4.36 Virtual desired inductance current . . . . . . . . . . . . . . . . . . . . . . . 46
4.37 Buck converter output voltage . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.38 Virtual desired output voltage . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.39 Duty ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.40 Duty ratio shown on oscilloscope . . . . . . . . . . . . . . . . . . . . . . . 47
4.41 PV array output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.42 PV array output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.43 PV array output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.44 PV array output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.45 PV array output power without control . . . . . . . . . . . . . . . . . . . . 48
4.46 PV array output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.47 Virtual desired voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.48 Virtual desired voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.49 Inductance current of buck converter . . . . . . . . . . . . . . . . . . . . . 49
4.50 Virtual desired inductance current . . . . . . . . . . . . . . . . . . . . . . . 49
4.51 Buck converter output voltage . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.52 Virtual desired output voltage . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.53 Duty ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.54 Duty ratio shown on oscilloscope . . . . . . . . . . . . . . . . . . . . . . . 50
4.55 PV array output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.56 PV array output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.1 Solar module SP75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 Conventional PWM buck converter . . . . . . . . . . . . . . . . . . . . . . 56
A.3 Output current and voltage acquisition . . . . . . . . . . . . . . . . . . . . 56
A.4 Load for buck converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.5 DS1103 controller board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
List of Tables
2.1 Simulate parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Part list for the MOSFET gate driver . . . . . . . . . . . . . . . . . . . . . 31
4.2 Solar module SP75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Specifications of the Conventional Buck Converter . . . . . . . . . . . . . . 34
Reference
[1] V. Loreto, Z. Eduardo, B. Manuel, and F. E. Camacho, “Direct steam generation in
solar boilers”, IEEE Control Systems Magazine, vol. 24, no. 2, pp. 15-29, Apr. 2004.
[2] C. C. Kung, and C. C. Liao, “Fuzzy-sliding mode controller design for tracking
control of nonlinear system”, in Proc. American Control Conference, vol. 1, no.29,
pp. 180-184, 1994.
[3] Z. Pei, K. Qin, and Y. Xu, “Dynamic adaptive fuzzy neural-networkidentification
and its application”, in Proc. IEEE International Conference on Systems, Man and
Cybernetics, vol. 5, no. 5, pp. 4974-4979 Oct. 2003.
[4] Spectrolab. http://www.spectrolab.com/
[5] WIKIPIDIA Solar cell, http://en.wikipedia.org/wiki/Solar-cell
[6] E. Lorenzo, Solar Electricity. Earthscan Publications Ltd., 1994.
[7] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power
tracking: an algorithm for rapidly changing atmospheric condition”, IEE Proc. Generation,
Transmission and Distribution, vol.45, no.1, pp. 59-64, 1998.
[8] M. R. Patel, Wind and Solar Power Systems. CRC Press, LLC, Material, 1999.
[9] B. S. Borowy, and Z. H. Salameh, “Methidology for optimally sizing the combination
of a battery bank and PV array in a wind/PV hrbrid system”, IEEE Trans. Energy
Convers., vol. 11, no.2, pp. 367-375, 1996.
[10] F. Valenciaga, P. F. Puleston, and P. E. Battaiotto, “Power control of a photovoltaic
array in a hybrid electric generation system using sliding mode techniques”, IEE
Proc. Control Theory and Applications, vol. 148, no. 6, pp. 448-455 Nov. 2001.
[11] K. Y. lian, and J. J. liou, “Output tracking control for fuzzy systems via output
feedback design”, IEEE Transactions on Fuzzy Systems, vol. 14, pp. 628-639, Oct.
2006.
[12] B. S. Borowy, and Z. H. Salameh, “Dynamic response of a standalone wind energy
conversion system with battery energy storage to a wind gust”, IEEE Trans. Energy
Convers., vol. 12, no. 1, pp. 73-78, 1997.
[13] SIEMENS Solar module. http://cardi.igeofcu.unam.mx/techdocs/Siemenssp-75.pdf
[14] ”Solution for Control,” dSPACE, 2003. http://www.dspace.de/ww/de/gmb/home.cfm
[15] C. C. George, High-frequency Switching Power supplies. McGraw-Hill, 1995.
[16] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics. John Wiley and
Sons, Inc. 1995.
[17] A. I. Pressman, Swithcing Power Supply Design. McGraw-Hill, 1999.
[18] V. Arcidiacono, S. Corsi, and L. Lambri, “Maximum power point tracker for photovoltaic
power plants”, in Proc. IEEE PESC Conf. Rec., pp. 507-512, 1982.
[19] N. Patcharaprakiti, and S. Premrudeepreechacharn, “Maximum power point tracking
using adaptive fuzzy logic control for grid-connected photovoltaic system”, in Proc.
IEEE Power Engineering Society Winter Meeting, pp. 372-377, 2002.
[20] Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum-power-point-tracking controller
for photovoltaic energy conversion system”, IEEE Transactions on Industrial
Electronics, vol. 48, no. 3, pp. 594-601, June 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊