跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林子慰
研究生(外文):Tsu-Wei Lin
論文名稱:轉子動平衡最佳化方法及精度影響因數探討
論文名稱(外文):Investigations in Optimization Method and Factor Affecting Accuracy for Rotor Balancing
指導教授:康淵康淵引用關係張永鵬張永鵬引用關係
指導教授(外文):Yuan KangYeon-Pun Chang
學位類別:博士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:117
中文關鍵詞:遺傳演算法禁忌搜尋法量測誤差最佳化L曲線準則條件數Tikhonov正則法轉子動平衡最小平方法影響係數法
外文關鍵詞:Influence coefficient methodLeast squares algorithmMeasurement errorCondition numberL-curve criterionRotor balancingOptimizationGenetic algorithmTikhonov regularizationTabu search
相關次數:
  • 被引用被引用:1
  • 點閱點閱:976
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本文探討影響係數法之轉子動平衡,藉由不同的量測點/平衡面之數目及位置的選擇,所建構的影響係數矩陣,基於線性系統理論,探討條件數對於轉子動平衡校正質量計算的影響。運用的最佳化方法,包括遺傳演算法及禁忌搜尋法,以最小化影響係數矩陣之條件數為目標函數,預先在平衡程序前決定量測點/平衡面之位置或數目,可提高動平衡效率及精度,降低成本,避免因矩陣病態而導致平衡失敗,甚至造成機組損傷。
對於病態嚴重的影響係數矩陣,其條件數過大,微小的量測擾動,將導致傳統的最小平方法所求得之校正量大幅偏離精確值,使得動平衡完全失敗,因此,本文運用求解反問題的Tikhonov正則法,並且使用L曲線準則決定正則參數,使得病態影響係數矩陣之動平衡方程式求解,得到校正質量的精度,可有效改善。並且考量量測誤差之影響,比較最小平方法及正則法之動平衡效果,分析其校正量、平衡精度、條件數以及量測誤差之關係,以提昇平衡精度及抗誤差能力。
本文使用有限元素法建立轉子-軸承系統之數值模型,分析其穩態響應,以實驗及數值分析方法驗證轉子之動平衡,包括單轉速以及雙轉速多平衡面影響係數法之動平衡程序。
In this dissertation, the rotor balancing is investigated by using the influence coefficient method. An influence coefficient (IC) matrix is constructed by various selections of numbers and locations of measurement sensors and/or balancing planes. The influences of condition number on the unbalance determinations are studied based on the linear system theorem. The minimization of condition number of influence coefficient matrix is served as an objective function for the reduction of computation and measurement errors in balancing procedure by using genetic algorithms and tabu search. Thus, credible locations and numbers of measurement sensors and/or balancing planes can be determined in advance. The balancing efficiency and accuracy will be improved as fulfilling the optimization methods. Moreover, the failure of rotor balancing could be avoided due to the wellness of influence coefficient matrix.
For the illness of influence coefficient matrix, its condition number is large and the correction mass determined by least squares algorithm (LSA) will be away from the true value due to slight measurement errors. For this reason, the Tikhonov regularization is utilized to solve influence coefficient equations for the unbalances determination. Additionally, the L-curve criterion is adopted to search appropriate value of regularization parameter. The balancing accuracy and robustness against disturbance can be improved by using Tikhonov regularization (TR). Furthermore, the influences of measurement errors on the unbalances determination are considered in this dissertation. The capability of against perturbation is required for determination of correction mass. The relationships among balancing accuracies, correction mass, condition number, and measurement error are analyzed by adopting both LSA and TR. Also, the balancing results using TR are compared with those using LSA.
The rotor-bearing systems are modelled based on finite element method for the analysis of steady-state responses. The balancing procedures are simulated and experimented by using a rotor kit, which include rigid and flexible rotor balancing with multi-planes.
目 錄

摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VIII
圖目錄 X
符號說明 XIII
第一章 導論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.3 研究目的 4
1.4 本文大綱 5
第二章 影響係數矩陣之條件數 6
2.1 條件數 6
2.1.1 方陣線性系統 6
2.1.2 非方陣線性系統 7
2.1.3 矩陣維度特徵之條件數證明 8
2.2 影響係數法 14
2.3 校正量之誤差分析 15
2.4 數值例 17
2.4.1 條件數之算例 17
2.4.2 條件數與矩陣維度之關係 22
第三章 條件數與平衡精度 26
3.1 轉子-軸承系統之有限元模型 26
3.2 剛性、撓性轉子之平衡選擇及平衡精度 30
3.3 動平衡分析 30
3.4 IC矩陣2×2之條件數與平衡精度不相關之證明 38
3.5 實驗 39
3.6 小結 41
第四章 最佳化動平衡位置 43
4.1 遺傳演算法 43
4.2 禁忌搜尋法 45
4.3 方法比較 48
4.4 數值模擬 49
4.4.1 轉子-軸承系統 49
4.4.2 最佳化 52
4.5 實驗比較 57
4.5.1 模態試驗 58
4.5.2 動平衡實驗 61
4-6 小結 66
第五章 轉子動平衡反運算 68
5.1 影響係數方程之Tikhonov正則解 68
5.2 正則解之誤差估計 69
5.3 決定正則參數之方法:L曲線準則 71
5.4 平衡精度 72
5.5 條件數對於LSA與ITR之影響 72
5.5.1 分析例:剛性轉子平衡 73
5.5.2 分析例:撓性轉子平衡 74
5.6 小結 75
第六章 量測誤差之影響 83
6.1 求解影響係數方程組 83
6.2 求解加權影響係數方程組 94
6.3 小結 104
第七章 結論與未來展望 105
7.1 結論 105
7.1.1 最小化影響係數矩陣之條件數及最佳化 105
7.1.2 正則法之轉子動平衡 106
7.1.3 量測誤差之影響 106
7.2 實際工業運用 107
7.3 未來展望 107

參考文獻 109
論文發表 114
個人資料 117

表 目 錄

表2-1 影響係數矩陣及其條件數 21
表2-2 量測點及平衡面數目相等時之條件數 23
表2-3 量測點數目大於平衡面時之條件數 23
表2-4 量測點數目小於平衡面時之條件數 24
表2-5 五平衡面及不同量測點數目時之條件數 24
表2-6 五量測點及不同平衡面數目時之條件數 25
表3-1 轉子-軸承系統1號模型之轉盤參數及不平衡量 29
表3-2 轉子-軸承系統2號模型之轉盤參數及不平衡量 29
表3-3 轉子-軸承系統3號模型之轉盤參數及不平衡量 29
表3-4 單轉速3×3平衡結果 32
表3-5 雙轉速(3×2)×3平衡結果 32
表3-6 轉盤之物理參數 40
表3-7 固定量測點時,實驗所求得之校正量 40
表3-8 固定平衡面時,實驗所求得之校正量 40
表4-1 遺傳演算法與禁忌搜尋法之特性比較 48
表4-2 有限元素模型之物理參數 49
表4-3 遺傳演算法之參數設定 52
表4-4 禁忌搜尋法之參數設定 52
表4-5 影響係數矩陣之優化結果 53
表4-6 影響係數矩陣(2×2)之條件數 54
表4-7 平衡結果及條件數之比較 55
表4-8 實驗轉盤之物理參數 58
表4-9 校正量及條件數之比較 62
表5-1 LSA所得之校正量及平衡後之殘振倒數 76
表5-2 ITR所得之校正量及平衡後之殘振倒數 76
表6-1 動平衡方案之量測點、平衡面位置及其條件數 84

圖 目 錄

圖3-1 轉子座標系統 27
圖3-2 轉子-軸承系統之有限元素模型 28
圖3-3 轉子-軸承系統1號模型之模態分析 30
圖3-4 單轉速影響係數之平衡精度、總校正質量與條件數之關係 33
圖3-5 雙轉速影響係數(3×2)×3之平衡精度、總校正質量與條件數之關係 34
圖3-6 單轉速影響係數3×3之平衡前後振幅,平衡轉速1000 rpm 35
圖3-7 雙轉速影響係數(3×2)×3之平衡前後振幅 36
圖3-8 三量測點,三平衡面之校正質量落點分佈 37
圖3-9 2×2平衡精度、總校正質量與條件數之關係 38
圖3-10 實驗設備及rotor kit 模組 39
圖3-11 比較不同平衡面動平衡前後之旋振幅值 36
圖4-1 遺傳演算法之演算流程 44
圖4-2 禁忌搜尋法之演算流程 46
圖4-3 轉子-軸承系統之有限元素模型 50
圖4-4 Campbell Diagram 50
圖4-5 簡諧響應分析之各轉速振形 51
圖4-6 運算200次遺傳演算法之最佳解世代序號落點分佈 54
圖4-7 轉速1000 rpm時,平衡前後之旋振幅值 56
圖4-8 動平衡前後之旋振響應 57
圖4-9 量測點及平衡面之規劃 58
圖4-10 模態試驗之轉移函數頻譜及共振頻率 59
圖4-11 加速規量測軸承座位置之頻瀑圖 59
圖4-12 平衡前,轉速為30Hz、54Hz及70Hz時,位移計所量測之旋振響應頻譜 60
圖4-13 不平衡響應之量測方式 61
圖4-14 平衡轉速30Hz時,不平衡響應之時域訊號 62
圖4-15 校正量之分佈 64
圖4-16 原始不平衡響應之極座標圖 65
圖4-17 影響係數矩陣為2×2,平衡前後各量測點之振幅及相位 66
圖5-1 量測點(S3, S5, S8)、平衡面(P8, P9, P10)時,ITR校正量之收斂情形 77
圖5-2 量測點固定為(S1, S10)、(S3, S5, S8)時,2×2(左行)、3×3(右行)動平衡前後旋振響應 78
圖5-3 LSA與ITR之平衡精度(2×2)及校正量幅值總和隨條件數之變化情形 79
圖5-4 LSA與ITR之平衡精度(3×3)及校正量幅值總和隨條件數之變化情形 80
圖5-5 量測點固定為(S1, S2, S3)時,(3×2)×3動平衡前後旋振響應 81
圖5-6 LSA與ITR之平衡精度(3×2)×3及校正量幅值總和隨條件數之變化情形 82
圖6-1 以LSA求解(3×2)×3 之IC方程組時,平衡精度隨條件數之變化情形,量測位置為S1、S2及S3 87
圖6-2 以LSA求解不平衡量時,平衡精度隨量測誤差之變化情形 88
圖6-3 以L-曲線決定正則參數 89
圖6-4 以TR求解不平衡量時,平衡精度隨量測誤差之變化情形 90
圖6-5 以TR求解Case 1-1時,比較正則參數 對平衡精度之影響 91
圖6-6 以TR求解Case 1-3時,比較正則參數對平衡精度之影響 92
圖6-7 比較以LSA與TR求解Case 1-3所得之不平衡量隨量測誤差之變化情形 93
圖6-8 以TR求解影響係數(IC)方程組時,正則參數由L曲線圖決定 96
圖6-9 以TR求解加權影響係數(WIC)方程組時,正則參數由L曲線圖決定 97
圖6-10 Case 2-1之平衡精度隨量測誤差之變化情形 98
圖6-11 Case 2-2之平衡精度隨量測誤差之變化情形 99
圖6-12 Case 3-1之平衡精度隨量測誤差之變化情形 100
圖6-13 Case 3-2之平衡精度隨量測誤差之變化情形 101
圖6-14 Case 4-1之平衡精度隨量測誤差之變化情形 102
圖6-15 Case 4-2之平衡精度隨量測誤差之變化情形 103
[1]Thearle, E. L., “Dynamic Balancing of Rotating Machinery in the Field,” ASME Journal of Applied Mechanics, Vol. 56, pp. 745-753, 1934.
[2]Goodman, T. P., “A Least-Squares Method for Computing Balance Corrections,” ASME Journal of Engineering for Industry, Vol. 86, No. 3, pp. 273-279, 1964.
[3]Darlow, M. S., Balancing of High-Speed Machinery, Springer- Verlag, New York, 1989.
[4]Lee, C.-W. and Kim, Y.-D., “Modal Balancing of Flexible Rotors During Operation: Design and Manual Operation of Balancing Head,” IMechE Part C: Journal of Mechanical Engineering Science, Vol. 201, pp. 349-355, 1987.
[5]Lee, C.-W., Joh, Y.-D., and Kim, Y. D., “Automatic Modal Balancing of Flexible Rotors During Operation: Computer Control Balancing Head,” IMechE Part C: Journal of Mechanical Engineering Science, Vol. 204, pp. 19-28, 1990.
[6]Van de Vegte, J. and Lake, R. T., “Balancing of Rotating Systems Operation,” Journal of Sound and Vibration, Vol. 57, No. 2, pp. 225-235, 1978.
[7]Lund, J. W. and Tonnesen, J. “Analysis and Experiments on Multi-Plane Balancing of a Flexible Rotor,” ASME Journal for Industry, Vol. 94, No. 1, pp. 233-242, 1972.
[8]Bishop, R. E. D., “On the Possibility of Balancing Rotating Flexible Shafts,” IMechE Part C: Journal of Mechanical Engineering Science, Vol. 24, No. 4, pp. 215-220, 1982.
[9]Pilkey, W. D., Bailey, J., and Smith, P. D., “A Computational Technique for Optimizing Correction Weights and Axial Location of Balance Planes of Rotating Shafts,” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 105, pp. 90-93, 1983.
[10]Dyer, S. W., Ni, J., Shi, J., and Shin, K.-K., “Robust Optimal Influence-Coefficient Control of Multiple-Plane Active Rotor Balancing Systems,” ASME Journal of Dynamic, Measurement, and Control, Vol. 124, pp. 41-46, 2002.
[11]Zhou, S. and Shi, J., “Optimal One-Plane Active Balancing of a Rigid Rotor during Acceleration,” Journal of Sound and Vibration, Vol. 249, No. 1, pp. 196-205, 2002.
[12]Xu, B., Qu, L., and Sun, R., “The Optimization Technique-Based Balancing of Flexible Rotors without Test Runs,” Journal of Sound and Vibration, Vol. 238, No. 5, pp. 877-892, 2000.
[13]Kang, Y., Chiang, C.-P., Wang, C.-C., Lin, T.-W., and Chui, Y.-J., “The Minimization Method of Measuring Errors for Balancing Asymmetrical Rotors,” JSME International Journal, Series C, Vol. 46, No. 3, pp. 1017-1025, 2003.
[14]Lin, T.-W., Kang, Y., Wang, C.-C., Chang, C.-W., and Chiang, C.-P., “An Investigation in Optimal Locations by Genetic Algorithm for Balancing Flexible Rotor-Bearing Systems,” Proceedings of the ASME Turbo Expo, Vol. 4, Reno-Tahoe, Nevada, pp. 899-906, 2005.
[15]Kang, Y., Lin, T.-W., Chang, Y.-P., Wang, Y.-P., Hsueh, C. C., “Study in Balancing Accuracy and Condition Number of Flexible Rotors,” Proceedings of The 25th IASTED International Conference on Modeling, Identification, and Control, Canary Islands, Spain, pp. 13-18, 2006.
[16]Holland, J. H., Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975, MIT Press, 1992.
[17]De Jong, K. A., Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph. D. Dissertation, University of Michigan, 1975.
[18]Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Massachusetts, 1989.
[19]Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
[20]Glover, F., “Future Paths for Integer Programming and Links to Artificial Intelligence,” Computer and Operations Research, Vol. 13, No. 5, pp. 533-549, 1986.
[21]Glover, F. and Laguna, M., Tabu Search, Kluwer Academic Publishers, Boston, 1997.
[22]Rudolph, G., “Convergence Analysis of Canonical Genetic Algorithms,” IEEE Neural Networks, Vol. 5, No. 1, pp. 96-101, 1994.
[23]Faigle, U. and Kern, W., “Some Convergence Results for Probabilistic Tabu Search,” ORSA Journal on Computing, Vol. 4, No. 1, pp. 32-37, 1992.
[24]Glover, F. and Hanafi, S., “Tabu Search and Finite Convergence,” Discrete Applied Mathematics, Vol. 119, pp. 3-36, 2002.
[25]Kincaid, R. K. and Padula, S. L., “D-optimal Designs for Sensors and Actuators Locations,” Computers and Operations Research, Vol. 29, No. 6, pp. 701-713, 2002.
[26]Keller, J. B., “Inverse Problems,” The American Mathematical Monthly, Vol. 83, pp. 107-118, 1976.
[27]Handamard, J., Lectures on the Cauchy Problems in Linear Partial Differential Equations, Yale University Press, New Haven, 1923.
[28]Tikhonov, A. N. and Arsenin, V.Y., Solutions of Ill-Posed Problems, V. H. Winston & Sons, Washington, 1977.
[29]King, J. T. and Chikkingworth, D. “Approximation of Generalized Inverses by Iterated Regularization,” Numerical Functional Analysis and Optimization, Vol. 2, pp. 449-513, 1979.
[30]Hansen, P. C., “Analysis of Discrete Ill-posed Problems by Means of the L-curve,” SIAM Review, Vol. 34, No. 4, pp. 561-580, 1992.
[31]Engl, H. W., “Using the L-curve for Determining Optimal Regularization Parameters,” Numerical Mathematics, Vol. 69, pp. 25-31, 1994.
[32]Vogel, C. R., “Non-convergence of the L-curve Regularization Parameter Selection Method,” Inverse Problems, Vol. 12, pp. 535-547, 1996.
[33]Hanke, M., “Limitations of L-curve Method for Ill-posed Problems,” BIT Numerical Mathematics, Vol. 36, pp. 287-301, 1996.
[34]Malajovich, G., “Condition Number Bounds for Problems with Integer Coefficients,” Journal of Complexity, Vol. 16, No. 3, pp. 529-551, 2000.
[35]Release 10.0 Documentation for ANSYS, SAS IP, Inc., USA, 2005.
[36]Kang, Y., Chang, Y.-P., Tsai, J.-W., Mu, L.-H., and Chang, Y.-F., “Investigation in Stiffness Effects on Dynamics of Rotor-Bearing- Foundation Systems,” Journal of Sound and Vibration, Vol. 231, pp. 343-374, 2000.
[37]Kang, Y., Chang, Y.-P., Tsai, J.-W., Chen, S.-C., and Yang, L.-K., “Integration ‘CAE’ Strategies for the Design of Machine Tool Spindle-Bearing Systems,” Finite Elements in Analysis and Design, Vol. 37 , No. 6-7, pp. 485-511, 2001.
[38]Li, M.-J. and Tong, T.-S., “An Improved Partheno-Genetic Algorithm for Travelling Salesman Problem,” IEEE Proceedings of the 4th World Congress on Intelligent Control and Automation, Vol. 4, pp. 3000-3004, 2002.
[39]Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996.
[40]Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., and Yagola, A. G., Numerical Methods for the Solution of Ill-posed Problems, Kluwer Academic Publishers, London, 1990.
[41]Engl, H.W., Hanke, M., and Neubauer, A., Regularization of Inverse Problems, Kluwer Acadmic Publishers, Boston, 2000.
[42]Recktenwald, G., Numerical Methods with MATLAB: Implementation and Application, Upper Saddle River, New Jersey, Prenticed Hall, 2000.
[43]Gill, P. E., Murray, W., and Wright, M. H., Numerical Linear Algebra and Optimization, Volume1, Addison-Wesley, California, 1991.
[44]Watkins, D. S., Fundamentals of Matrix Computations, John Wiley & Sons, New York, 1991.
[45]Golub, G. H. and Van Loan, C. F., Matrix Computations, 3rd edition, The John Hopkins University Press, Baltimore, 1996.
[46]Datta, B. N., Numerical Linear Algebra and Applications, Pacific Grove, California, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top