跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志彥
研究生(外文):CHIH-YEN LIN
論文名稱:Brouwer固定點定理與Nash均衡之研究
論文名稱(外文):A Study of Brouwer's Fixed Point Theorem and Nash's Equilibrium
指導教授:李是男
指導教授(外文):Shyh-Nan Lee
學位類別:碩士
校院名稱:中原大學
系所名稱:應用數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:63
中文關鍵詞:非合作賽局凸體重心細分Brouwer固定點定理Nash均衡定理
外文關鍵詞:convex bodyNash's equilibrium theorembarycentric subdivisionBrouwer's fixed point theoremnoncooperative game
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在對著名的Brouwer固定點定理與Nash均衡定理做一仔細研究。第一節為導論。第二節中我們簡介單體的三角剖分,相關的定義如仿射獨立、仿射組合、仿射包、凸包 、重心坐標均有列出,與之相關的一些性質也均有陳述。第三節中我們介紹單體的重心與上升單體序列,並詳細討論單體重心細分的存在性,它保證單體可以被三角剖分成一些任意小的單體。在第四節中,我們對凸集與凸體仔細探究,可
知某些特殊的同胚映射將凸體映成適當維度的單體。第五節中,以典型的方式研究Sperner引理,Knaster-Kuratowski-Mazurkiewicz定理及Brouwer固定點定理。在第六節中,介紹了標準型的有限非合作賽局,相關的概念如參賽者、純策、混策、局面、報償、均衡點均有介紹及例子。從證明中可以看到非合作賽局中的均衡點是與之相關Nash映射的固定點。
The purpose of this thesis is to give a detail study of the well known Brouwer's fixed point theorem and Nash's equilibrium theorem. Section 1 is an introduction. Notions about triangulations of simplexes are recalled in section 2, the definitions of the affine independence, affne combination, affine hull, convex hull, barycentric coordinate, simplex, face, and triangulation are given and some basic properties of them are listed. In section 3, the definitions of barycenters of simplexes and sequences of ascending simplexes are introduced. After some discussions, the existence of a triangulation, the k-th barycentric subdivision, of a simplex is established, in case k is large enough, the maximum diameter of its members can be arbitrarily small. In section 4, we study some topological properties of convex sets and convex bodies, we see that some special homeomorphisms map convex bodies onto simplexes of suitable dimensions. In section 5, we study the celebrate theorems of Sperner, Knaster-Kuratowski-Mazurkiewicz,
and Brouwer in a typical way. In section 6, the definition of noncooperative finite games in normal form is given, notions of the player, pure or mixed strategy, situation, payoff and equilibrium
point are introduced with some examples. We see that the fixed points of Nash mappings are exactly the equilibrium points in mixed strategies of the corresponding games.
摘要.................................................i
Abstract.............................................ii
謝誌.................................................iii
Contents............................................iv
List of Figures............................ .........v
1. Introduction......................................1
2. Preliminaries.....................................2
3. Barycentric Subdivisions.........................11
4. Convex Sets and Convex Body......................24
5. Brouwer's Fixed Point Theorem....................39
6. Nash's Equilibrium Theorem.......................44
Reference...........................................57
基本資料............................................58

List of Figures
Figure 2.1 3
Figure 2.2 4
Figure 2.3 5
Figure 2.4 6
Figure 2.5 7
Figure 2.6 7
Figure 2.7 9
Figure 2.8 10
Figure 4.1 36
Figure 5.1 39
Figure 6.1 53
[1] C.-L. Tzeng,Sperner's Lemma And Matroids, Master's thesis, Chung Yuan Christian
University, Taiwan, (1999).
[2] E. Sperner, Neuer Beweis fur die Invarianz der Dimensionszahl und des Gebietes,
Abh.Math. Sem. Univ. Hamburg, 6 (1928), 265-272.
[3] James R. Munkers, Elements of Algebraic Topology, Addison-
Wesley Publishing Company, (1984).
[4] Walter Rudin, Principles of Mathematical Analysis, third edition, McGraw-Hill,(1976).
[5] Guillermo Owen, Game Theory, third edition, Academic Press Limited, (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文