跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宏駿
研究生(外文):Horng-Jiunn Lin
論文名稱:一種無有機溶劑殘留之新式溶液製作在高穩定軟性/有機電晶體
論文名稱(外文):A New Organic-Solvent-Free Process for High Stability Flexible/Organic Thin Film Transistors
指導教授:魏拯華
指導教授(外文):Jeng-Hua Wei
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:94
語文別:中文
論文頁數:68
中文關鍵詞:奈米碳管液相沈積
外文關鍵詞:Carbon NanotubesLiquid Phase Deposition.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究目的是開發使用一種無有機溶劑殘留的新式溶液法來製作出有機電晶體(Organic Thin Film Transistors, OTFTs)。在此論文中分別選用奈米碳管(Carbon Nanotubes, CNTs)與新式液相沉積二氧化矽法(Liquid Phase Deposition Siliocn Oxide, LPD-SiO2)作為元件之主動層與絕緣層。首先我們將CNT沉浸在十二烷基硫酸鈉(Sodium Dodecyl Sulfate, SDS),加上超音波振盪來配製CNT溶液,之後將碳管旋塗在絕緣層(SiO2)上方之源極與集極之間形成通道。接著在上方覆蓋一層絕緣保護層,藉由特殊的LPD-SiO2在低於50℃條件下成長。一般情況,在OTFT之半導體層與保護層是使用有機溶劑作分解,如此容易對下層之閘極絕緣層與基板造成破壞。通常大氣中之水氣、氧氣也極易氧化CNT,造成OTFT的漏電流以及特性衰減。在本實驗中,每一層皆是採用旋塗的方式製作。此外,因為我們是使用LPD-SiO2的方式,由於LPD-SiO2本身是水溶液的成長方式,故利用LPD-SiO2並不會有殘餘的機溶劑在CNT中,同時可以製作出air-stable之元件。最後我們利用適當的退火溫度處理,展現出良好的載子移動率與電流開關比。在如此低的製程溫度中,我們製作出電流開關比~103。
The primary goal of a thesis is to fabricate a new soluble, organic-solvent-free process for organic thin film transistors (OTFTs). In this device, the single-walled carbon nanotubes used as the channel layer were immersed in sodium dodecyl sulfate (SDS) undergoing the ultrasound wave and spread between source and drain electrode on top of silicon oxide layer. Subsequently, a top passivation insulator were formed by a special liquid-phase deposition silicon oxide (LPD-SiO2) process at 50℃ or less. In general, the semiconducting and passivation layer of OTFT are dissolved in organic solvents and these solvents will damage the underlying layers, including the gate insulator and substrate. Besides, the water and oxygen molecules in air usually oxidize the organic base material. It will cause undesirable leakage current and the performance of OTFT will degrade evidently. In this thesis, the semiconducting CNT network is formed by spun-on process and the insulating passivation layer is grown by immersing the wafers into the LPD-SiO2 solution. After these processes, there are no residual organic solvents in the underlying layers, including the gate insulator and CNT channel. Finally, after proper turning the anneal recipes, an air-stable OTFT is completed. At this low process temperature, the oxide-gated OTFT shows the medium on/off current ratio (~103).
中文摘要………………………………………………………………………………… i
英文摘要………………………………………………………………………………… ii
誌謝……………………………………………………………………………………… iii
目錄……………………………………………………………………………………… iv
表目錄…………………………………………………………………………………… vi
圖目錄…………………………………………………………………………………… vii
第一章 緒論…………………………………………………………………………… 1
第二章 奈米碳管與奈米碳管使用在OTFT之歷史回顧…………………………… 3
2.1 奈米碳管的發現………………………………………………………… 3
2.2 奈米碳管材料與特性分析……………………………………………… 4
2.3 奈米碳管之製作方式…………………………………………………… 7
2.3.1 雷射放電法………………………………………………………… 7
2.3.2 雷射剝渡法………………………………………………………… 8
2.3.3 化學氣相沉積法…………………………………………………… 9
2.4 奈米碳管於場效電晶體之電性分析…………………………………… 10
2.5 奈米碳管在OTFT之應用……………………………………………… 15
第三章 實驗方法……………………………………………………………………… 20
3.1 材料的來源與配置……………………………………………………… 20
3.1.1 碳管來源…………………………………………………………… 20
3.1.2 碳管配置…………………………………………………………… 21
3.1.3 不同溶劑對碳管分佈情形………………………………………… 21
3.2 平面式背閘極…………………………………………………………… 24
3.2.1 CNTFET for top contact……………………………………………… 24
3.2.2 CNTFET for bottom contact(一)…………………………………… 27
3.2.3 CNTFET for bottom contact(二)…………………………………… 27
3.3 液相沉積………………………………………………………………… 29
3.3.1 LPD製作方式……………………………………………………… 29
3.3.2 利用LPD-SiO2製作上閘極介電層………………………………… 31
3.4 量測儀器………………………………………………………………… 31
3.5 製程儀器簡介…………………………………………………………… 31
3.5.1 熱蒸鍍機…………………………………………………………… 31
3.5.2 曝光機台…………………………………………………………… 32
3.5.3 氧化高溫爐………………………………………………………… 32
第四章 實驗結果與討論……………………………………………………………… 35
4.1 不同通道長度與寬度對奈米碳管特性之影響………………………… 35
4.1.1 電流開關比與載子移動率分析…………………………………… 36
4.2 長通道CNT OTFT之特性分析………………………………………… 47
4.3 LPD-SiO2絕緣保護層與退火效應對CNT OTFT之影響……………… 49
4.3.1 LPD-SiO2對CNT OTFT之影響…………………………………… 49
4.3.2 退火效應對CNT OTFT之影響…………………………………… 50
4.4 使用低溫LPD-SiO2作閘極介電層對OTFT之結果討論……………… 57
4.4.1 小結………………………………………………………………… 58
第五章 結論…………………………………………………………………………… 62
參考文獻………………………………………………………………………………… 63
簡歷……………………………………………………………………………………… 68
[1] 魏拯華、賴明駿、王宏祥與高明哲,“高效能奈米碳管電晶體元件”,第十一屆國防科技, 2002.
[2] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, IEEE Electron Device Lett., 18, pp. 87, 1997.
[3] K. Bradley, et al., “Flexible Nanotube Electronics”, Nano Lett., 0, pp. A-C, 2003.
[4] J. Hone, M. Whitney, A. Zettle, Synthetic Metals, 103, pp. 2489, 1991.
[5] M. Treacy, T. W. Ebbesen and J. M.Gibson, “Exceptionally high Young's modulus
observed for individual carbon nanotubes”, Nature, 381, pp. 678-680, 1996.
[6] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 345, pp. 56-58, 1991.
[7] S. Berber, Young-Kyun Kwon, and David Tomanek, “Unusually High Thermal
Conductivity of Carbon Nanotubes”, Phys. Rev. Lett., 84, pp. 4613, 2000.
[8] E. S. Snow, et al., “Random networks of carbon nanotubes as an electronic
material”, Appl. Phys. Lett., 82, pp. 2145, 2003.
[9] S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science, 280, pp. 1744-1746, 1998.
[10] B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of
carbon nanotubes”, Appl. Phys. Lett., 79, pp. 1172-1174, 2001.
[11] P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett., 87, pp. 215502-1-4, 2001.
[12] H. Dai and et al., Nature, 242, pp. 654, 2003.
[13] S.C. Lim, et al., “Organic thin-film transistors on plastic substrates”, Materials Science and Engineering, B 121, pp. 211-215, 2005.
[14] S. Iijima, Materials Science and Engineering, B 19, pp. 172, 1993.
[15] M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith and R. E. Smalley, J. Vac., Sci. Tech., A 19, pp. 1800, 2001.
[16] M. S. Dresselhaus, G. Dresselhaus and P. Saito, Carbon, 33, pp. 883, 1995.
[17] J. C. Charlier and J. P. Issi, “Electronic structure and quantum transport in carbon nanotubes”, Applied Physics A:Materials Science & Processing, 67, pp. 79-87, 1998.
[18] Mildred Dresssel Haus, Gene Dresselhaus, Peter Eklund and Riichiro Saito, “Carbon nanotubes”, Physics World, pp. 33-38, 1998.
[19] J. W. Mintmire and C. T. White, “First-principles band structures of armchair Nanotubes”, Applied Physics A Materials Science & Processing, 67, pp. 65-69, 1998.
[20] Takeshi Nakanishi and Tsuneya Ando, “Conductance of carbon nanotube junctions in magnetic fields”, Journal of the Physical Society of Japan, 66, 10, pp. 2973-2976, 1997.
[21] J. C. Charlier, T. W. Ebbesen and Ph. Lambin, “Sturctural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes”, Physical Review B, 53, 16, pp. 11108-11113, 1996.
[22] P. Delaney, H. Choi, J. Ihm S. Louie and M. Cohen, Physical Review, B, 12, pp. 7899, 1999.
[23] M. Quyang, L. Huang, C. Cheung and C. Lieber, Science, 292, pp. 702, 2001.
[24] T. W. Ebbesen,”Carbon Nanotubes:Preparation and Properties”, CRC Press, Inc., New York, pp. 1-293, 1997.
[25] H. Lange, A. Huczko, P. Byszewski, E. Mizera and H. Shinohara, “Influence of boron on carbon arc plasma and formation of fullerene and nanotubes", Chemical Physics Letters, 289, pp. 174-180, 1998.
[26] Yahachi Saito, Sashiro Uemura and Koji Hamaguchi, “Cathode ray tube lighting elements with carbon nanotube field emitters”, Japanese Journal of Applied Physics, 37, Part 2, 3B, pp. L346-L348, 1998.
[27] D. T. Colbert, et al., “Growth and sintering of fullerene nanotubes”, Science, 266, pp. 1218-1222, 1994.
[28] Chang Bao-he, et al., ”Study on high-temperature oxidizayion of loosely-entangled carbon nanotubes prepared by arc discharge”, Acta Physica Sinica, 47, 2, pp. 340-346, 1998.
[29] Yoshinori Ando, Xinluozhao and Masato Ohkohchi, “Sponge of Purified Carbon Nanotubes”, Japanese of Journal Applied Physics, 37, Part 2, 1, pp. L61-L63, 1998.
[30] T. Guo, P. Nikolaev, A. Thess, and et al., “Catalytic growth of single-walled nanotubes by laser vaporization”, Chemical Physics Letters, 243, pp. 49-54, 1995.
[31] Andreas Thess, et al., “Crystalline ropes of metallic carbon nanotubes”, Science, 273, pp. 483-487, 1996.
[32] W. K. Maser, et al., “Production of high-density single-walled nanotube material by a simple laser-ablation method”, Chemical Physics Letters, 292, pp. 587-593, 1998.
[33] A. G. Rinzler, et al., “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization”, Applied Physics A:Materials Science & Processing, 67, pp. 29-37, 1998.
[34] G. Che, et al., “Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method”, Chem. Mater., 10, pp. 260-267, 1998.
[35] Guangli Che, et al., “Carbon nanotubus membranes for electrochemical energy storage and production”, Nature, 393, pp. 346-349, 1998.
[36] R. Martel, et al., Appl. Phys. Lett., 73, pp. 2447, 1999.
[37] Philip G. Collins, et al., “Extreme OxygenSensitivity of Electronic Properties of Carbon Nanotubes” Science, 287, pp. 1801-1804, 2000.
[38] J. Kong, et al., “Nanotube molecular wires as chemical sensors”, Science, 287, pp. 622-625, 2000.
[39] Jia Chen, et al., “Self-aligned Carbon Nanotube Transistors with Novel Chemical
Doping”, IEEE, IEDM, pp. 695-698, 2004.
[40] Ali Javey, et al., ”High Performance n-Type Carbon Nanotube Field-Effect
Transistorswith Chemically Doped Contacts”, Nano, Lett., 5, pp. 345-348, 2005.
[41] Moonsub Shim, et al., “Polymer Functionalization for Air-Stable n-Type Carbon
Nanotube Field-Effect Transistors”, J. Am. Chem. Soc., 123, pp. 11512-11513
[42] Chongwu Zhou, et al., “Modulated Chemical Doping of Individual Carbon Nanotubes”, Science, 290, pp. 1552-1555, 2000.
[43] Giles P. Siddons, et al., “Highly Efficient Gating and Doping of Carbon Nanotubes with Polymer Electrolytes”, Nano Lett., 4, pp. 927-931, 2004.
[44] V. Derycky, et al., ”Carbon nanotube inter- and intramolecular logic gates”, Nano Letters, 1, No. 9, pp. 453-456, 2001.
[45] C. D. Dimitrakopoulos and D. J. MasCaro, IBM J. Res.& Dev., 45, pp. 11, 2001.
[46] S. J. Wind, J. Appenzeller R. Martel, V. Derycke and Ph. Avouris, Appl. Phys. Lett., 80, pp. 3817, 2002.
[47] E. S. Snow, et al., “High-mobility carbon-nanotube thin-film transistors on a polymeric substrate”, Appl. Phys. Lett., 86, pp. 033105, 2005.
[48] Ching-Fa Yeh, et al.,”Novel Technique for SiO2 Formed by Liquid-Phase Deposition for Low-Temperature Processed Polysilicon TFT”, IEEE Electron Device Lett., 14, No. 8, pp. 403-405, 1993.
[49] Jenq-Shiuh Chou and Si-Chen Lee, “Improved process for liquid phase deposition of silicon dioxide”, Appl. Phys. Lett., 64, No. 15, pp. 11, 1994.
[50] Ching-Fa Yen, Shyue-Shyh Lin, and Tzy-Yan Hong, “Low Temperature Processed MOSFET’s with Liquid Phase Deposited SiO2-xFx as Gate Insulator”, IEEE Elctron Device Lett., 16, No. 7, pp. 316-318, 1995.
[51] Jeng-Hua Wei and Si-Chen Lee, “The Structure Change of Liquid Phase Deposited Silicon Oxide by Water Dilution”, Electrochemical. Soc., 144, No. 5, pp. 1870-1874, 1997.
[52] Jiun-lin Yeh and Si-Chen Lee, “Amorphous-Silicon Thin-Film Transistor with Liquid Phase Deposition of Silicon Dioxide Gate Insulator”, IEEE Electron Device Lett., 20, No. 3, pp. 138-139, 1999.
[53] J. Jang, S. H. Han, “High-Performance OTFT and its application”, Current Applied Physics, 6S1, pp. e17-e21, 2006.
[54] A. Schindler, et al., “Solution-deposited carbon nanotube layers for flexible display applications”, Physica E, pp. 1-5, 2006.
[55] Keith Bradley, Jean-Christophe P. Gabriel, and George Gru1ner, “Flexible Nanotube Electronics”, nano Lett., 0, No. 0, pp. A-C, 2003.
[56] T. Takenobu, et al., “High-performance transparent flexible transistor using carbon
nanotube films”, Appl. Phys. Lett., 88, pp. 033511, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃煜、魏然,「從“喉舌”到黨營企業-中國大陸電視傳媒40 年歷史軌跡探索(1958~1998)」,東亞季刊,第29 卷第3 期(1999 年7 月),頁76~92。
2. 曾淳良,「從政治面看中共新聞傳媒政策」,廣電人,第87 期(2002 年3 月),頁26~29。
3. 陳懷林,「試析中國媒體制度的漸進改革-以報業為例」,新聞學研究,第62期(2000 年1 月),頁97~118。
4. 張依依,「從『共產主義』到『社會責任』:中國大陸加入WTO 在文化產業之演變-以傳媒為例」,遠景基金會季刊,第7 卷第1 期(2006 年1 月),頁143~205。
5. 汪子錫,「市場經濟制度下中共政治傳播結構的變化」,空大人文學報,第13期(2004 年12 月),頁207~240。
6. 呂郁女,「邁向集團化發展的中國大陸廣電管理制度」,廣電人,第87 期(2002年3 月),頁19~25。
7. 楊志弘,「中國大陸加入WTO 後,廣電媒體集團化之分析」,亞太經濟合作評論,第9 期(2002 年7 月),頁73~97。
8. 楊開煌,「大陸政體下的媒體角色之變遷— 解釋典範之探討」,東亞季刊,第23 卷第2 期(1991 年10 月),頁20~38。
9. 路風,「中國單位體制的起源和形成」,中國社會科學季刊(香港),第5 期(1993年11 月),頁66~87。
10. 劉現成,「中國大陸電視業的龍頭」,廣電人,第12 期(1995 年12 月),頁15~18。
11. 賴祥蔚,「中國大陸電視收視率調查的歷史分析」,廣電人,第84 期(2001 年),頁20~25。
12. 賴祥蔚,「中國大陸電視廣告的政治經濟分析」,廣電人,第88 期(2002 年4月),頁54~64。
13. 賴祥蔚,「翻開中國電視史--從中央電視台的發展,看大陸電視政策」,廣電人,第87 期(2002 年3 月),頁13~18。