跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 15:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王明仁
研究生(外文):Ming-Jen Wang
論文名稱:利用全反射外差干涉術之U型光纖生化感測器
論文名稱(外文):U-shaped Optical Fiber Biosensor Based on Multiple Total Internal Reflections in Heterodyne Interferometry
指導教授:王信福
指導教授(外文):Shinn-Fwu Wang
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:94
語文別:中文
論文頁數:60
中文關鍵詞:內部全反射外差干涉U型光化感測器
外文關鍵詞:optical fiber biosensormultiple total internal reflections (MTIRs)heterodyne interferometry (HI)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要的研究目的是提出一個新穎的光纖生化感測器,其方法乃是結合多次全反射原理及共光程外差干涉術來進行有關U型光纖生化感測器之研究。將一段多模光纖的中間部份之光纖纖殼予以去除,並進一步製作成一個U型形狀做為感測器元件。當一含有差頻的水平偏振光(P偏振光)及垂直偏振光(S偏振光)之外差光源耦合進入此U型光纖感測器中,其入射光會在此光纖感測器內進行多次內部全反射再從光纖出射,若吾人將此U型光纖感測器予以置入待測物質中時,我們可利用檢偏板、光偵測器及相位計來量取干涉信號的相位差變化量,進而可推知待測物質折射率。當 折射率變化由1.33到1.365,此光纖感測器之解析度可達到 折射率單位(RIU) 且其靈敏度可到達6300 (degree/RIU)。我們可將此光纖生化感測器應用在於生醫、生物科技及生物化學感測應用上。此光纖生化感測器具有體積較小、靈敏度高、可即時量測、可避免環境干擾等等優點,對壓力、溫度、溼度、濃度或折射率的量測及分析而言,是一相當有用的工具。吾人希望其對於將來的精密技術工業以及生物科技等研究發展方向有相當的貢獻。
In this research, an optical fiber biosensor based on multiple total internal reflections in heterodyne interferometry is proposed. The sensor is made of a long U-shaped multimode optical fiber which cladding is removed from the sensing portion of the fiber. With the fiber biosensor the phase shift difference due to the multiple total internal reflections (MTIR) effect between the P and S-polarizations is measured by using heterodyne interferometry. Substituting the phase shift difference into Fresnel’s equations, the refractive index for the tested medium can be calculated. It is clear that the sensitivity can reach 6300 (degree/RIU) in the range of from 1.33 to 1.365 and the resolution of the sensor can reach refractive index unit (RIU). The optical fiber biosensor could be valuable for chemical, biological and biochemical sensing. It has some merits, such as, high resolution and stability, small size and real-time measurement.
目錄
中文摘要………………………………………………………………………………… i
英文摘要………………………………………………………………………………… ii
誌謝……………………………………………………………………………………… iii
目錄……………………………………………………………………………………… iv
表目錄…………………………………………………………………………………… vi
圖目錄…………………………………………………………………………………… vii
符號說明………………………………………………………………………………… ix
第一章 緒論…………………………………………………………………………… 1
1.1 研究背景與文獻回顧……………………………………………………… 1
1.2 研究目的…………………………………………………………………… 2
1.3 論文架構…………………………………………………………………… 2
第二章 內部全反射外差干涉術原理………………………………………………… 4
2.1 前言………………………………………………………………………… 4
2.2 偏振原理…………………………………………………………………… 5
2.2.1 線性偏振光(Linear Polarization Light)……………………………… 6
2.2.2 圓偏振光(Circular Polarization Light)……………………………… 7
2.2.3 橢圓偏振光(Elliptical Polarization Light)…………………………… 8
2.3 Fresnel’s Equations………………………………………………………… 10
2.4 內部全反射之原理……………………………………………………… 12
2.5 外差干涉源理…………………………………………………………… 15
2.6 外差光源種類…………………………………………………………… 17
2.6.1聲光調變器AOM(Acousto-Optic Modulator)…………………… 17
2.6.2電光調變器EOM(Electro-optic modulator)……………………… 18
2.6.3 Zeeman Laser………………………………………………………… 21
2.7各種外差光源方式的比較………………………………………………… 22
第三章 U型光纖感測器之工作原理………………………………………………… 26
3.1 前言……………………………………………………………………… 26
3.2光纖內部全反射原理……………………………………………………… 26
3.3光纖內部的全反射次數…………………………………………………… 27
3.4 U型光纖生化感測器角度之關係………………………………………… 30
第四章 實驗系統架構及原理………………………………………………………… 33
4.1 前言………………………………………………………………………… 33
4.2 以共光程外差干涉術之直線加U型光纖生化感測器之實驗架構圖…… 33
4.3 信號處理…………………………………………………………………… 35
第五章 實驗結果與模擬……………………………………………………………… 38
5.1 前言………………………………………………………………………… 38
5.2數值模擬與分析…………………………………………………………… 39
5.2.1 光纖感測器對入射角(θ)之關係…………………………………… 39
5.2.2直線型光纖(10cm)對不同折射率之TIR總相位差值Δtotal變化量… 40
5.2.3 U型光纖(10cm)對於不同折射率之TIR總相位差值Δtotal變化量… 41
5.2.4 單邊直線(2.5cm)加U型光纖(5cm)對於不同角度之TIR總相位差
值Δtotal變化量……………………………………………………… 42
5.3實驗結果與數據…………………………………………………………… 43
5.3.1直線型光纖實驗及模擬(10.5cm)…………………………………… 43
5.3.2 U型光纖實驗及模擬(9.8cm)……………………………………… 46
5.3.3直線加U型光纖實驗及模擬(10cm、單邊直線各2.5cm U型5cm)… 49
5.4實驗討論與結論…………………………………………………………… 52
5.4.1靈敏度………………………………………………………………… 52
5.4.2解析度………………………………………………………………… 53
5.4.3標準差值……………………………………………………………… 54
5.4.4誤差來源……………………………………………………………… 55
第六章 結論與未來展望……………………………………………………………… 56
6.1 結論………………………………………………………………………… 56
6.2 未來展望…………………………………………………………………… 57
參考文獻………………………………………………………………………………… 58
簡歷……………………………………………………………………………………… 60
參考文獻
1.王信福,「D型光纖生化感測器」,國立中央大學光電科學研究所,博士論文,民國九十四年。
2.邱銘宏,「共光程外差干涉儀的原理與其應用之研究」,國立交通大學光電工程研究所博士論文,民國八十六年。
3.孫慶成,光電概論,全華科技圖書股份有限公司, 民國九十三年十月。
4.李隆翔,「結合表面電漿共振及全反射外差干涉術的微小角度測量儀之研究」,清雲科技大學電子工程研究所,碩士論文,民國九十五年七月。
5.B. G. Gupta, Anurage Sharma and C. D. Singh, “ Evanescent wave absorption sensors based on uniform and tapered fibers”, Int. J. Optoelectronics. 8, pp.409-418, 1993
6.Tyson L. Lowder, Brian R. Tebbs, Richard H. Selfridge, Stephen M. Schultz, Kevin H. Smith, and Thomas D. Monte, “Polarization analysis of surface-relief D-fiber Bragg gratings”, Appl. Opt. 46, pp.2387-2393, 2007.
7.Kevin H. Smith, Benjamin L. Ipson, Richard H. Selfridge, and Stephen M. Schultz, “Versatile in-fiber sensing by use of core-replaced D-fiber”, Appl. Opt. 44, pp.22-26, 2005.
8.Ming-Hung Chiu, Chih-Hsien Shih, Ming-Hsin Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement”, Sens. Actuators. B123, pp.1120-1124, 2007.
9.B. D. Gupta, H. Dodeja, A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe”, Optical and Quantum Electornics. 28, pp.1692-1639, 1996.
10.S. K. Khijwania, K. L. Srinivasan, J. P. Singh “Performance optimized optical fiber sensor for humidity measurement”, Optical Engineering. 44(3), 034401, 2005.
11.Rajan, Subhash Chand, B. D. Gupta, “Surface plasmon resonance based fiber-optic sensor for the detection of pesticide”, Sens. Actuator. B 123, pp.611-666, 2007.
12.Óscar Esteban, Natalia Díaz-Herrera, María-Cruz Navarrete, and Agustín González-Cano, “Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration”, Appl. Opt. 45, pp.7294-7298, 2006.
13.A. K. Sharma, Rajan, B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor”, Opt. Communications. 274, pp.320-326, 2007.
14.A. K. Sharma and B. D. Gupta, “Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor”, Appl. Opt. 45, pp.151-161, 2006.
15.P. Y. Chien, “Two-frequency displacement measurement based on a double-heterodyne technique”, Rev. Sci. Instrum. vol.62, pp.254-255, 1991.
16.P. G. Charette, I. W. hunter and C. J. H. brenan, “A complete high performance heterodyne interferometer displacement transducer for microactuator control”, Rev. Sci. Instrum. vol.63, pp-241-248, 1992.
17.N.A. Massia, R. D. Neson and S. Holly, “High-performance real-time heterodyne interferometry”, Appl. Opt. vol.18, pp.1797-1803, 1979.
18.Der-Chin Su, Ming-Horng Chiu, and Cheng-Der Che, “Simple two-frequency laser”, Prec. Eng., vol.18, pp. 161-163, 1996.
19.Jiun-You Lin, Der-Chin Su, “A new type of optical heterodyne polarimeter”, Meas. Sci. Technol., 14, pp.55-58, 2003.
20.Ming-Hong Chiu, Der-Chin Su, “Angle masurement by using the total-refection heterodyne interferometry”, Opt. Eg. 36, pp.1750-1753, 1997.
21.A. Yariv, P. Yeh, Optical waves in crystal, 亞美書局, 1983.
22.E. Hecht﹐Optics, 4ed., Addison Wesley, 2002.
23.Yu-Lung Lo and Chin-Ho Chuang, “Differential optical fiber refractometer based on a path-matching differential interferometer with temperature compensation”, Appl Opt. vol.40, pp.3518-3524, 2001.
24.T. Abrahamyan, E. Janunts, and Kh. Nerkararyan, “Detecting nanometric vibrations of a liquid surface by a metal-coated fiber tip”, Appl. Opt. vol.45, pp.8194-8196, 2006.
25.Yu Liu and Li Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fiber”, Appl. Opt. vol.46, pp.2516-2519, 2007.
26.Ainhoa Gastón, Fátima Pérez, and Joaquín Sevilla, “Otical fiber relative-humidity sensor with polyvinyl alcohol film”, Appl. Opt. vol.43, pp.4127-4132, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top