跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡啟訓
研究生(外文):Chi-Hsun Chien
論文名稱:具希伯特碎形結構/螺線形之交互與直接耦合式帶通濾波器設計
論文名稱(外文):Cross-coupled and Direct-coupled Spiral Resonator with Hilbert fractal configuration for Bandpass Filter Design
指導教授:呂伯強
指導教授(外文):Po-Chiang Lu
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:108
中文關鍵詞:希伯特螺線型諧振器交互耦合帶通濾波器
外文關鍵詞:HilbertSpiral resonatorCross coupledBand-pass filter
相關次數:
  • 被引用被引用:8
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出交互耦合與直接耦合兩種耦合的方式,設計出螺線型諧振器的新結構,俾供設計帶通濾波器時,達成提升耦合效率的目的。設計的螺線型諧振器,有習知的螺線結構,與以希伯特碎形結構為改良式圖型等,同時逕以比較其特性。其中,以簡化螺線型諧振器與簡化希伯特螺線型諧振器,能達到縮小面積、增加頻寬為目的。
在簡化螺線型諧振器中,得到的特性有,-0.3 dB低注入損耗,-27.1 dB高衰減量與較寬的頻寬29.1 %等。在簡化希伯特螺線型諧振器中,呈現的特性為,-0.27 dB低注入損耗,-19.5 dB衰減量與更為增寬的寬頻50.9 %等。文中,以電流分佈與頻率響應,為設計與分析的方法。
Both cross-coupled and direct-coupled configurations of the alternative spiral resonators are introduced with the large coupling coefficient for the bandpass filter design in this paper. The proposed spiral resonators included the conventional spiral resonator and the improved spiral resonator with Hilbert fractal configuration are studied and compared. In practice, the simplified spiral resonator and the simplified Hilbert spiral resonator present the performance of size reduction and bandwidth enhancement.
For simplified spiral resonator, the results with low insertion loss (-0.3 dB), higher out-of-band rejection level (-27.1 dB) and wide band filters (BW, 29.1 %) are obtained. For simplified Hilbert spiral resonator, the performance of lower insertion loss (-0.27 dB), high out-of-band rejection level (-19.5 dB) and wider band filters (BW, 50.9 %) are achieved. The results included electric current distribution and frequency responses are used for design and analysis.
中文摘要 ……………………………………………………………………………… i
英文摘要 ……………………………………………………………………………… ii
誌謝 …………………………………………………………………………………… iii
目錄 …………………………………………………………………………………… iv
表目錄 ………………………………………………………………………………… vii
圖目錄 ………………………………………………………………………………… viii
第一章 緒論 …………………………………………………………………………… 1
1.1 簡介 ……………………………………………………………………… 1
1.2 研究動機 ………………………………………………………………… 2
1.3 背景回顧 ………………………………………………………………… 3
1.4 論文架構 ………………………………………………………………… 5
第二章 濾波器基本原理 ……………………………………………………………… 6
2.1 濾波器的特性 …………………………………………………………… 6
2.1.1 濾波器的頻率響應 ………………………………………………… 6
2.1.2 濾波器的形式 ……………………………………………………… 10
2.1.3 微帶線濾波器原理 ………………………………………………… 13
2.2 微帶線濾波器的種類……………………………………………………… 15
2.2.1直接耦合與交互耦合原理…………………………………………… 19
第三章 直接耦合與交互耦合濾波器基本架構 ……………………………………… 21
3.1 直接耦合濾波器基本架構 ……………………………………………… 21
3.1.1 平行式結構 ………………………………………………………… 21
3.1.2 梳子式結構 ………………………………………………………… 22
3.1.3 方形結構 …………………………………………………………… 23
3.1.4 髮夾結構 …………………………………………………………… 25
3.2 交互耦合濾波器基本架構 ……………………………………………… 25
3.2.1 平行式結構 ………………………………………………………… 25
3.2.2 梳子式結構 ………………………………………………………… 26
3.2.3 方形結構 …………………………………………………………… 26
3.2.4 髮夾結構 …………………………………………………………… 27
3.3 耦合的影響 ……………………………………………………………… 28
3.4 設計架構…………………………………………………………………… 28
第四章 交互耦合與直接耦合希伯特螺線形帶通濾波器 …………………………… 30
4.1 螺線形帶通濾波器特性分析……………………………………………… 30
4.1.1 螺線形微帶線原理 ………………………………………………… 30
4.1.2 交互耦合螺線形帶通濾波器電磁模擬 …………………………… 33
4.2 希伯特帶通濾波器特性分析 …………………………………………… 43
4.2.1 希伯特曲線基本原理 ……………………………………………… 43
4.2.2 直接耦合希伯特帶通濾波器電磁模擬 …………………………… 45
4.2.3 交互耦合希伯特帶通濾波器電磁模擬 …………………………… 52
第五章 模擬與實驗分析 ……………………………………………………………… 59
5.1 實驗流程 ………………………………………………………………… 59
5.2 交互耦合螺線形帶通濾波器設計………………………………………… 61
5.2.1 改良式螺線形帶通濾波器設計 …………………………………… 61
5.2.2 模擬與實驗分析 …………………………………………………… 61
5.2.3 簡化式螺線形帶通濾波器設計 …………………………………… 63
5.2.4 模擬與實驗分析 …………………………………………………… 63
5.3 直接耦合希伯特帶通濾波器設計 ……………………………………… 67
5.3.1 模擬與實驗分析 …………………………………………………… 67
5.4 交互耦合希伯特帶通濾波器設計 ……………………………………… 70
5.4.1 改良式希伯特三次遞迴帶通濾波器設計 ………………………… 70
5.4.2 模擬與實驗分析 …………………………………………………… 70
5.4.3 簡化式希伯特三次遞迴帶通濾波器設計 ………………………… 73
5.4.4 模擬與實驗分析 …………………………………………………… 73
5.4.5 簡化式希伯特四次遞迴帶通濾波器設計 ………………………… 76
5.4.6 模擬與實驗分析 …………………………………………………… 76
第六章 結論 …………………………………………………………………………… 80
參考文獻 ……………………………………………………………………………… 82
簡歷 …………………………………………………………………………………… 92
1.D. M. Pozar, Microwave Engineering, John Wiley, Inc., 1998.
2.M. Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication, Matsushita Research Institute Tokyo, Inc., 2001.
3.K. Chang, L. H. Hsieh, Microwave Ring Circuits and Related Structures, John Wiley & Sons, Inc., 2004.
4.J. S. Hong, M.J. Lancaster, Microstrip Filters For Rf Microwave Application, John Wiley & Sons, Inc., 2001.
5.J. Kaiser, “The Archimedean two-wire spiral antenna”, Antennas and Propagation, IEEE Transactions on [legacy, pre - 1988], Volume 8, Issue 3, pp.312 – 323, May. 1960.
6.R. Bawer, J. J. Wolfe, “The spiral antenna”, “IRE International Convention Record”, Volume 8, Part 1, pp.84 – 95, Mar. 1960.
7.O. Inui, J. Nagai, “Miniaturization of wide-band VHF filters by using spiral resonators”, Proceedings of the IEEE, Volume 67, Issue 1, pp.20 – 24, Jan 1979.
8.K. Shibata, K. Hatori, Y. Tokumitsu, H. Komizo, “Microstrip Spiral Directional Coupler”, Microwave Theory and Techniques, IEEE Transactions, Volume 29, Issue 7, pp.680 – 689, July. 1981.
9.D. Cabana, “A New Transmission Line Approach for Designing Spiral Microstrip Inductors for Microwave Integrated Circuits”, Microwave Symposium Digest, MTT-S International, Volume 83, Issue 1, pp.245 – 247, May. 1983.
10.A. DiRe, “Performance characterisitcs of underground spiral antennas”, Antennas and Propagation Society International Symposium, 1984, Volume 22, pp.121 – 124, Jun. 1984.
11.G. E. Howard, Y. L. Chow, “Diakoptic theory for microstripline structures”, Antennas and Propagation Society International Symposium, 1990. AP-S. 'Merging Technologies for the 90's'. Digest., Volume 13, Issue 7-11, pp.1079 – 1082, May. 1989.
12.T, Becks, I. Wolff, “Analysis of 3-D metallization structures by a full-wave spectral-domain technique”, Microwave Theory and Techniques, IEEE Transactions,
Volume 40, Issue 12, pp.2219 – 2227, Dec. 1992.
13.H. Nakano, K. Kirose, “Numerical analysis of a dual-spiral printed antenna”, Antennas and Propagation, 1993., Eighth International Conference, Volume 12, pp.651 – 654, 1993.
14.D. Shively, “Spectral domain analysis of square spiral microstrip antennas”, Antennas and Propagation Society International Symposium, 1993. AP-S. Digest, Volume 13, Issue 28, pp.1466 – 1468, July. 1993.
15.C. W. Penney, R. J. Luebbers, “Input impedance, radiation pattern and radar cross section of spiral antennas using FDTD”, Antennas and Propagation, IEEE Transactions, Volume 42, Issue 9, pp.1328 – 1332, Sept. 1994.
16.J. Ely, C. Christodoulou, D. Shively, “Square spiral microstrip antennas: analysis for different sizes and substrate parameters using a personal computer”, Southcon/95. Conference Record, pp.362 – 367, March. 1995.
17.W. B. Kuhn, A. Elshabini-Riad, F. W. Stephenson, “Centre-tapped spiral inductors for monolithic bandpass filters”, Electronics Letters, Volume 31, Issue 8, 13, pp.625 – 626, April. 1995.
18.J. Ely, C. Christodoulou, D. Shively, “Square spiral microstrip antennas for wireless applications”, Microwave Systems Conference, 1995. Conference Proceedings, IEEE NTC '95, Volume 17-19, pp.229 – 232, May. 1995.
19.J. Crols, P. Kinget, J. Craninckx, M. Steyaert, “An analytical model of planar inductors on lowly doped silicon substrates for high frequency analog design up to 3 GHz”, VLSI Circuits, 1996. Digest of Technical Papers., 1996 Symposium, Volume 13-15, pp.28 – 29, June. 1996.
20.Hann-Haur Wu, Yi-Jen Chan, “Tunable high-Q MMIC active filter by negative resistance compensation”, llium Arsenide Integrated Circuit (GaAs IC) Symposium, 1997. Technical Digest 1997., 19th Annual, pp.252 – 255, Oct. 1997.
21.K. Nakayama, H. Nakano, “A spiral antenna on a cylinder”, Antennas and Propagation Society International Symposium, 1997. IEEE., 1997 Digest, Volume 3, Issue 13-18, pp.1592 – 1595, July. 1997.
22.Jianbing Chen, A. Z. Elshebeni, C. E. Smith, Y. Rahmat-Samii, “FDTD analysis of printed square spiral antennas for wireless communications”, Antennas and Propagation Society International Symposium, 1997. IEEE., 1997 Digest, Volume 3, pp.1550 – 1553, 13-18 July. 1997.
23.R. A. Brown, P. Ensaf, T. Marshall, M. Piket-May, B. Popvic, Z. Popvic, “Printed microwave couplers with thermal isolation”, Microwave Symposium Digest, 1997., IEEE MTT-S International, Volume 2, pp.983 - 986 vol.2, 8-13 June. 1997.
24.J. M. Lopez-Villegas, J. Samitier, C. Cane, P. Losantos, “Improvement of the quality factor of RF integrated inductors by layout optimization”, Radio Frequency Integrated Circuits (RFIC) Symposium, 1998 IEEE, pp.169 – 172, 7-9. June. 1998.
25.Chih-Yu Huang; Kin-Lu Wong, “Stripline-fed printed square spiral slot antenna for circular polarization”, Electronics Letters, Volume 34, Issue 24, pp.2290 – 2292, 26 Nov. 1998.
26.Ming-Jie Yu, Han-Hau Wu, Yi-Jen Chan, “900 MHz/1.8 GHz thin-film microwave bandpass filter”, Microwave Conference, 1999 Asia Pacific, Volume 3, pp.686 – 689, vol.3, 30 Nov.-3 Dec. 1999.
27.H. Nakano, K. Nakayama, “A curved spiral antenna above a conducting cylinder”, Antennas and Propagation, IEEE Transactions, Volume 47, Issue 1, pp.3 – 8, Jan. 1999.
28.Song Shi, K. Hirasawa, Zhi Ning Chen, “A dual-band cavity-backed single arm square spiral slot antenna”, Computational Electromagnetics and Its Applications, 1999. Proceedings. (ICCEA '99) 1999 International Conference, pp.191 – 194, 1999.
29.C. K. Ong, Linfeng Chen, Jian Lu, C. Y. Tan, B. T. G. Tan, “High-temperature superconducting bandpass spiral filter”, Microwave and Guided Wave Letters, IEEE [see also IEEE Microwave and Wireless Components Letters], Volume 9, Issue 10, pp.407 – 409, Oct. 1999.
30.Yo-Shen Lin, Chun-Hsiung Chen, “Design and modeling of twin-spiral coplanar-waveguide-to-slotline transitions”, Microwave Theory and Techniques, IEEE Transactions, Volume 48, Issue 3, pp.463 – 466, March 2000
31.A. E. Barinov, S. A. Zhgoon, V. A. Sukhov, H. T. Su, M. J. Lancaster, F. Huang, “Superconducting lumped-element filter with spiral inductors”, Microwave and Optical Technology Letters, Volume 29, Issue 2, pp.94-95, 20 April. 2001.
32.Jian-Yi Wu, Jeen-Sheen Row, Kin-Lu Wong, “Experimental studies of circularly polarized printed square spiral slot antennas”, Microwave Conference, 2000 Asia-Pacific, pp.1360 – 1364, 3-6. Dec. 2000.
33.A. E. Barinov, S. A. Zhgoon, “Planar superconducting lumped element bandpass filter with spiral inductors”, Microwave Symposium Digest, 2001 IEEE MTT-S International
Volume 1, pp.499 – 501. vol.1, 20-25. May. 2001.
34.H. K. Kan, R. B. Waterhouse, “Investigation of shorted spiral printed antennas for mobile handsets”, Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific, Volume 1, pp.103 – 106. vol.1, 3-6. Dec. 2001.
35.H. K. Kan, R. B. Waterhouse, “Small square dual spiral printed antennas”, Electronics Letters, Volume 37, Issue 8, pp.478 – 479, 12. Apr. 2001.
36.T. Soorapanth, S. S. Wong, “A 0-dB IL 2140±30 MHz bandpass filter utilizing Q-enhanced spiral inductors in standard CMOS”, Solid-State Circuits, IEEE Journal, Volume 37, Issue 5, pp.579 – 586, May. 2002.
37.Young-Taek Lee, Jong-Sik Lim, Chul-Soo Kim, Dal Ahn, Sangwook Nam, “A compact-size microstrip spiral resonator and its application to microwave oscillator”, Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters], Volume 12, Issue 10, pp.375 – 377, Oct. 2002.
38.Jong-Sik Lim, Chul-Soo Kim, Young-Taek Lee, Dal Ahn, Sangwook Nam, “A spiral-shaped defected ground structure for coplanar waveguide”, Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters]
Volume 12, Issue 9, pp.330 – 332, Sep. 2002.
39.Shih-Huang Yeh, Kin-Lu Wong, “Compact dual-frequency PIFA with a chip-inductor-loaded rectangular spiral strip”, Microwave and Optical Technology Letters, Volume 33, Issue 6, pp.394-397, 20. June. 2002.
40.Gye-An Lee, M. Megahed, F. De Flaviis, “Design and analysis of novel compact inductor resonator filter”, Microwave Symposium Digest, 2002 IEEE MTT-S International, Volume 3, pp.1621 – 1624, 2-7 June. 2002.
41.Young-Taek Lee, Jong-Sik Lim, Chul-Soo Kim, Dal Ahn, Sangwook Nam, “A compact-size microstrip spiral resonator and its application to microwave oscillator”, Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters], Volume 12, Issue 10, pp.375 – 377, Oct. 2002.
42.Chul-Soo Kim, Jong-Sik Lim, Sangwook Nam, Kwang-Yong Kang, Dal Ahn, “Equivalent circuit modelling of spiral defected ground structure for microstrip line”, Electronics Letters, Volume 38, Issue 19, pp.1109 – 1110, 12. Sep. 2002.
43.H. Nakano, H. Yasui, J. Yamauchi, “Numerical analysis of two-arm spiral antennas printed on a finite-size dielectric substrate”, Antennas and Propagation, IEEE Transactions, Volume 50, Issue 3, pp.362 – 370, March. 2002.
44.Hing-Kiu Kan, R. B. Waterhouse, “Shorted spiral-like printed antennas”, Antennas and Propagation, IEEE Transactions, Volume 50, Issue 3, pp.396 – 397, March. 2002.
45.C. Y. Tan, Linfeng Chen, Jian Lu, X. S. Rao, C. K. Ong, “Cross-coupled dual-spiral high-temperature superconducting filter”, Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters], Volume 13, Issue 6, pp.247 – 249, June. 2003.
46.Gye-An Lee, M. Megahed, F. De Flaviis, “Design of multilayer spiral inductor resonator filter”, Electronic Components and Technology Conference, 2003. Proceedings. 53rd, pp.452 – 457, 27-30. May. 2003.
47.J. S. Kwak, Jong-Hyun Lee, Jin-Pyo Hong, Seok-Kil Han, Wan-Sun Kim, Kook-Rin Char, “Narrow passband high-temperature superconducting filters of highly compact sizes for personal communication service applications”, Applied Superconductivity, IEEE Transactions, Volume 13, Issue 1, pp.17 – 19, March. 2003.
48.Jiafeng Zhou, M. J. Lancaster, F. Huang, “Superconducting microstrip filters using compact resonators with double-spiral inductors and interdigital capacitors”, Microwave Symposium Digest, 2003 IEEE MTT-S International, Volume 3, pp.1889 – 1892, vol.3, 8-13. June. 2003.
49.F. Huang, “Ultra-compact superconducting narrow-band filters using single- and twin-spiral resonators”, Microwave Theory and Techniques, IEEE Transactions, Volume 51, Issue 2, Part 1, pp.487 – 491, Feb. 2003
50.F. Huang, Xuming Xiong, “Very compact spiral resonator implementation of narrow-band superconducting quasi-elliptic filters”, Microwave Conference, 2003. 33rd European Volume 3, pp.1059 – 1062. Vol.3, 7-9. Oct. 2003.
51.J, Joubert, “Spiral microstrip resonators for narrow-stopband filters”, Microwaves, Antennas and Propagation, IEE Proceedings, Volume 150, Issue 6, pp.493 – 496, Dec. 2003.
52.F. Huang, Libin Yue, Deepika Gulati, “Compact copper microstrip filters with spiral resonators”, Microwave and Optical Technology Letters, Volume 42, Issue 6, pp.460-463, 20. Sep. 2004.
53.R. Azadegan, K. Sarabandi, “Miniature high-Q double-spiral slot-line resonator filters”, Microwave Theory and Techniques, IEEE Transactions, Volume 52, Issue 5, pp.1548 – 1557, May. 2004.
54.Shan Fuqi, Gao Baoxin, “Novel compact photonic bandgap structures using rectangular increasing-distance spiral slots”, Microwave and Optical Technology Letters, Volume 43, Issue 6, pp.537-539, 20. Dec. 2004.
55.Hee-Seok Song, Young-Shin Lee, Kyu-Ho Park, “A compact LTCC bandpass filter using resonators loaded with spiral-shaped open-circuited stubs”, Microwave Conference, 2004. 34th European, Volume 1, pp.397 – 400, 11-15 Oct. 2004.
56.Jia-Lin Li, Jian-Xin Chen, Jian-Peng Wang, Quan Xue, Liang-Jin Xue, “Dual-spiral microstrip bandpass filter with two transmission zeros”, Microwave and Optical Technology Letters, Volume 45, Issue 4, pp.331-332, 20 May. 2005.
57.J. J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M. C. Velazquez-Ahumada, J. Martel, “Efficient area reduction in microstrip cross-coupled resonator filters by using split rings resonators and spiral resonators”, 2005 European Microwave Conference, Volume 2, pp.4, 4-6. Oct. 2005.
58.Gye-An Lee, M. A. Megahed, F. De Flaviis, “Low-cost compact spiral inductor resonator filters for system-in-a-package”, Advanced Packaging, IEEE Transactions on [see also Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions], Volume 28, Issue 4, pp.761 – 771, Nov. 2005.
59.Guoyong Zhang, M. J,Lancaster, F. Huang, “Realization of four transmission zeros in a four-pole superconducting microstrip filter using cross-shaped spiral resonators”, Applied Superconductivity, IEEE Transactions, Volume 15, Issue 4, pp.3927 – 3931, Dec. 2005.
60.Guoyong Zhang, F. Huang, M. J. Lancaster, “Superconducting spiral filters with quasi-elliptic characteristic for radio astronomy”, Microwave Theory and Techniques, IEEE Transactions, Volume 53, Issue 3, Part 1, pp.947 – 951, March. 2005.
61.F, Huang, “Superconducting spiral wide bandpass filters with wide upper stopband”, Microwave Theory and Techniques, IEEE Transactions, Volume 53, Issue 7, pp.2335 – 2339, July. 2005.
62.Jian-Zhong Gu, Xiao-Wei Sun, “A compact microstrip bandpass filter using folded parallel-coupled-lines”, Microwave and Optical Technology Letters, Volume 48, Issue 11, pp.2328-2330, Nov. 2006.
63.Hui Zhao, Tie Jun Cui, “A double-spiral resonator structure to realize left-handed material with lower resonant frequency”, Microwave and Optical Technology Letters, Volume 48, Issue 5, pp.923-926, May 2006.
64.Guoyong Zhang, M. J. Lancaster, F. Huang, “A high-temperature superconducting bandpass filter with microstrip quarter-wavelength spiral resonators”, Microwave Theory and Techniques, IEEE Transactions, Volume 54, Issue 2, Part 1, pp.559 – 563, Feb. 2006.
65.Peng Wang, Linfeng Chen, C. Y. Tan, C. K. Ong, “Analysis of quality factors of spiral resonators”, Microwave and Optical Technology Letters, Volume 48, Issue 3, pp.439-443, March. 2006.
66.S. Pal, C. J. Stevens, D. J. Edwards, “Compact parallel coupled HTS microstrip bandpass filters for wireless communications”, Microwave Theory and Techniques, IEEE Transactions, Volume 54, Issue 2, Part 1, pp.768 – 775, Feb. 2006.
67.F. Huang, “Quasi-dual-mode microstrip spiral filters using first and second harmonic resonances”, Microwave Theory and Techniques, IEEE Transactions, Volume 54, Issue 2, Part 1, pp.742 – 747, Feb. 2006.
68.Min-Hang Weng, Hung-Wei Wu, Yu-Chi Chang, Chun-Yueh Huang, Yan-Kuin Su, “A parallel coupled-line bandpass filter with wide stopband using slotted ground structures”, Microwave and Optical Technology Letters, Volume 49, Issue 1, pp.159-162, January. 2007.

69.K. J. Vinoy, K. A. Jose, V. K. Varadan, V. V. Varadan, “Resonant frequency of Hilbert curve fractal antennas”, Antennas and Propagation Society International Symposium, 2001. IEEE, Volume 3, pp.648 - 651, vol.3, 8-13. July. 2001.
70.K. J. Vinoy, K. A. Jose, V. K. Varadan, V. V. Varadan, “Hilbert curve fractal antenna: A small resonant antenna for VHF/UHF applications”, Microwave and Optical Technology Letters, Volume 29, Issue 4, pp.215-219, 20. May. 2001.
71.Best, S.R.; Morrow, J.D.; The effectiveness of space-filling fractal geometry in lowering resonant frequency, Antennas and Wireless Propagation Letters Volume 1, Issue 1, 2002 Page(s):112 – 115.
72.J. Anguera, C. Puente, J. Soler, “Miniature monopole antenna based on the fractal Hilbert curve”, Antennas and Propagation Society International Symposium, 2002. IEEE,
Volume 4, pp.546 – 549, vol.4, 16-21. June. 2002.
73.J. Romeu, S. Blanch, “A three dimensional Hilbert antenna”, Antennas and Propagation Society International Symposium, 2002. IEEE, Volume 4, pp550 – 553, vol.4, 16-21 June. 2002.
74.D. Gala, J. Soler, C. Puente, C. Borja, J. Anguera, “Miniature microstrip patch antenna loaded with a space-filling transmission line based on the fractal Hilbert curve”, Microwave and Optical Technology Letters, Volume 38, Issue 4, pp.311-312, 20. Aug. 2003.
75.Jinhui Zhu, A. Hoorfar, N. Engheta, “Mutual coupling effects in space-filling-curve antennas”, Wireless Communication Technology, 2003. IEEE Topical Conference, pp.277 – 278, 15-17. Oct. 2003.
76.M. Barra, C. Collado, J. Mateu, J. M. O'Callaghan, “Hilbert fractal curves for HTS miniaturized filters”, Microwave Symposium Digest, 2004 IEEE MTT-S International
Volume 1, pp.123-126, Vol.1, 6-11. June. 2004.

77.A. T. M. Sayem, M. Ali, H. S. Hwang, “Miniaturized dual-band Hilbert slot antenna for wireless application”, Antennas and Propagation Society International Symposium, 2004. IEEE, Volume 3, pp.3119-3122, Vol.3, 20-25. June. 2004.
78.V. Crnojevic-Bengin, D. Budimir, “Novel compact resonators with multiple 2-D Hilbert fractal curves”, 2005 European Microwave Conference, Volume 1, pp.3, 4-6. Oct. 2005.
79.V. Crnojevic-Bengin, D. Budimir, “Novel 3-D Hilbert microstrip resonators”, Microwave and Optical Technology Letters, Volume 46, Issue 3, pp.195-197, Aug. 2005.
80.M. Barra, C. Collado, J. Mateu, J. M. O'Callaghan, “Miniaturization of superconducting filters using Hilbert fractal curves”, Applied Superconductivity, IEEE Transactions,
Volume 15, Issue 3, pp.3841 – 3846, Sept. 2005.
81.V. Crnojevi -Bengin, “Compact 2D Hilbert microstrip resonators”, Microwave and Optical Technology Letters, Volume 48, Issue 2, pp.270-273, Feb. 2006.
82.Xue-Song Yang, Bing-Zhong Wang, Yong Zhang, “Two-port reconfigurable Hilbert curve patch antenna”, Microwave and Optical Technology Letters, Volume 48, Issue 1, pp.91-93, January. 2006.
83.劉子維,「平面方形螺旋電感的研究與其在帶通濾波器上的應用」,國立中央大學-電機工程研究所,碩士論文,民國九十一年。
84.謝青航,「雙模雙環型微帶線帶通濾波器」,國防大學中正理工學院-電子工程研究所,碩士論文,民國九十二年。
85.曹智濠,「交叉耦合式高溫超導濾波器之製作與特性研究」,大葉大學-電機工程研究所,碩士論文,民國九十二年。
86.林松鋒,「交叉指狀微帶線帶通濾波器之研究」,樹德科技大學-電腦與通訊研究所,碩士論文,民國九十三年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top