跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建志
研究生(外文):Chien-Chih Lin
論文名稱:升壓型諧振電路及其太陽能照明應用研究
論文名稱(外文):Boost Resonant Converter and Photovoltaic Lighting Application
指導教授:吳黎明
指導教授(外文):Li-Ming Wu
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:96
中文關鍵詞:升壓型諧振電路太陽能照明電感性負載最大功率追蹤
外文關鍵詞:Boost resonant converterPhotovoltaic lightingInductive load、Maximum power
相關次數:
  • 被引用被引用:4
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一新型升壓諧振電路拓樸,並將之發展為獨立型太陽能照明系統。所提升壓型諧振電路以半橋為架構,結合升壓電路與諧振電路於同一級,可同時操作於直流升壓與高頻弦波雙輸出模式,亦可以單一負載操作。在雙向連續導通與電感性負載為設計條件下,電路開關切換具有零電壓導通特性,上橋開關並有同步導通效果。所提電路除了具有結構簡單、多輸出等特徵外,尚有能源效率高等優點。
本論文發展的太陽能照明系統利用升壓型諧振電路做為單級電力轉換裝置,螢光燈與蓄電池為負載,太陽能電池最大功率追蹤以升壓電路及單晶片斜率攀爬法完成。利用一組驅動IC,系統設計為日間以高頻對蓄電池充電,夜間以低頻點亮螢光燈照明;控制策略上,電池充電模式以調變開關責任週期進行定電壓控制,夜間照明模式則以調變開關切換頻率完成定電流控制,另外並發展系統控制電路,包括日夜照明判別電路、高低頻率選擇電路、VCO 頻率調變電路等,完成太陽能照明系統整體功能。
除了理論分析、設計與電路模擬外,本論文實際製作一組太陽能照明系統,以21瓦螢光燈與36V 鉛酸電池為負載,進行系統功能驗證與測試。實驗結果顯示,理論分析與實測結果具有相當一致性,系統功能亦能達成設計之目標。
A novel resonant converter---the boost resonant converter is presented in this thesis. The proposed converter is developed and applied as the power conversion unit in a stand-alone photovoltaic lighting system. Based on half bridge structure, the proposed boost resonant converter combines the dc-dc boost converter and the dc-ac resonant inverter to form a single unit, which operates to provide dual outputs, one is the boosted DC output and the other is the high frequency sinusoidal output. Single output can also be achieved with only one load.
Under conditions of bidirectional continuous conduction and nductive load, the switches in the boost resonant converter could be turned on with ZVS. In addition, the upper switch of the half bridge is turning on with synchronous effect. The advantages of the proposed boost resonant converter include simple structure, multiple outputs, and high energy efficiency.
The solar-powered lighting system developed in this thesis utilizes the boost resonant converter as the power conversion unit and the fluorescent lamp and lead-acid battery as the loads. The maximum power point tracking of the solar cell panel is finished using a DC boost converter operated in hill-climb algorithm with a microcontroller. The photovoltaic system is designed to charges the lead-acid battery in the daytime with a high switching frequency, and the lead-acid battery turns on the fluorescent lamp in the nighttime with a low switching
frequency. While the lead-acid battery is charged with constant voltage by modulating the duty ratio, the fluorescent lamp illuminates with constant lamp current by modulating the switching frequency, all with the same set of driver ICs. To implement the solar-powered system, a day-night illumination gauge circuit, a frequency selection circuit, and a voltage-controlled oscillator (VCO) are also included to make the system function as designed.
Apart from theoretical analysis, design and computer simulation, an experimental prototype system is constructed. The performance of the prototype circuit loaded with fluorescent lamp of 21W and lead-acid battery of 36V are measured. The measured results are in good agreement with theoretical analysis. The photovoltaic lighting system is also functioned as expected.
中文摘要.............................................................i
英文摘要............................................................ii
誌謝...............................................................iii
目錄................................................................iv
表目錄..............................................................vi
圖目錄.............................................................vii
符號說明............................................................xi
第一章 緒論..........................................................1
1.1 背景與研究動機....................................................1
1.2 各章節簡介.......................................................4
第二章 基本諧振電路...................................................5
2.1 簡介............................................................5
2.2 串聯諧振串聯負載電路..............................................7
2.3 串聯諧振並聯負載電路..............................................8
2.4 串聯諧振串並聯負載電路............................................11
2.5 諧振電路........................................................12
2.6 類諧振電路......................................................15
2.7 半橋式諧振換流器.................................................15
第三章 升壓型諧振電路.................................................22
3.1 介紹............................................................22
3.2 電路架構........................................................22
3.3 電路運作模式分析.................................................23
3.4 電路之可升壓性質.................................................29
3.5 交流特性之電路分析...............................................30
3.6 電路設計........................................................37
第四章 太陽能電池及螢光燈特性分析......................................39
4.1 簡介............................................................39
4.2 太陽能電池原理與特性..............................................40
4.3 太陽光電能系統...................................................42
4.4 太陽能電池最大功率追蹤............................................43
4.5 螢光燈特性.......................................................49
4.5.1 螢光燈之基本結構...............................................49
4.5.2 螢光燈的氣體放電發光流程........................................50
4.5.3 螢光燈之電壓-電流(I-V)特性曲線................................51
第五章 太陽能照明應用.................................................54
5.1 簡介............................................................54
5.2 太陽能發電裝置...................................................54
5.2.1 太陽能電池模組.................................................55
5.2.2 升壓式轉換器...................................................55
5.2.3 電壓與電流前饋電路..............................................58
5.3 太陽能最大功率追蹤實現............................................59
5.4 太陽能照明系統實現................................................61
5.4.1 系統控制電路...................................................62
5.4.2 控制IC........................................................64
5.4.3 光感測電路.....................................................67
5.4.4 定電流控制電路.................................................68
第六章 模擬與實驗結果.................................................73
6.1 簡介............................................................73
6.2 實作電路量測與PSIM模擬結果........................................74
第七章 結論與未來展望.................................................92
7.1 結論............................................................92
7.2 未來展望........................................................93
參考文獻............................................................94
簡歷................................................................96
[1]吳財福,張健軒,陳裕愷,「太陽能供電與照明系統綜論」,全華科技圖書股份有限公司,民國89年。
[2]華志強,「高效率低成本太陽能發電系統之研製」,行政院國家科學 委員會研究計畫成果摘要報告,民國86年7月。
[3]吳財福,余德鴻,「電子安定器綜論」,全華書局,民國八十四年。
[4]林文明,「應用柔性切換技術於太陽能供電之點燈系統」,國立雲林科技大學電機研究所碩士論文,民國90年。
[5]莊嘉琛,「太陽能工程-太陽能電池篇」,全華出版社,1997。
[6]吳財福,余德鴻,劉原全,「單級高功因電子安定器」,全華書局,民國八十六年。
[7]洪金泉,「串聯諧振並聯負載調光安定器之分析與設計」,碩士論文,中正大學,民國八十五年。
[8]張英彬,柯聖浩,「電子安定器之實作技術」,文京圖書有限公司,民國八十九年。
[9]吳黎明,林建志,「多功能直流昇壓半橋串振電子安定器」,中華民國第二十七屆電力工程研討會,2006年12月22-23日。
[10]蔡國隆,藍啟哲,林育宗及鄒應嶼,「數位控制並網型太陽光變頻器之研製」第二十六屆電力研討會,pp.2253-2260,2005年。
[11]A. M. Kazimierczuk and W. Szaraniec, “Class D Voltage-Switching Inverter with Only One Shunt Capacitor,” IEE Proc. Pt. B, Electric Power Appl. Vol. 139, pp. 449-456, Sept. 1992.
[12]Bo Yang, F. C. Lee, A. J. Zhang and G. Hang, “LLC Resonant Converter For Front End DC/DC Conversion,” IEEE APEC, pp.1108-1112. 2002.
[13]Bo Yang, F. C. Lee, A. J. Zhang and G. Hang, “Over current methods for LLC resonant Converter,” IEEE APEC, pp.605-1609. 2003.
[14]C. C. Hua, J. R. Lin and C. M. Shen, “Design and Implementation of Photovoltaic Power Storage System with Digital Signal Processor,” Journal of The Chinese Institute of Electrical Engineering, Vol.5, No.1, pp.278-282, 1998.
[15]C. R. Sullivan and M. J. Powers, “A High-Efficiency Maximum Power Point Tracker for Photovoltaic Arrays in a Solar-Powered Race Vehicle,” IEEE PESC Conf. pp. 574 -580, 1993.
[16]E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a Microcontroller-Based Photovoltaic Maximum Power Point Tracking Control System,” IEEE Trans. on Power Electronics, Vol. 16, No. 1, pp. 46-54, Jan. 2001.
[17]F. H. Raab,“Class-D Power Inverter Load Impedance for Maximum Efficiency,” RF Technology Expo’85 Conf., Anaheim, CA, pp. 287-295, Jan. 23-25, 1985.
[18]F. Harashima, H. Inaba and N. Takashima, “Microprocessor-Controlled SIT Inverter for Solar Energy System,” IEEE Trans. on Industrial Electronics, Vol. IE-34, pp. 50-55, Feb.1987.
[19]M. Bodur, M. Ermis, “Maximum power point tracking for low power photovoltaic solar panels,” Proceedings of the IEEE Electro Technical Conferencd ,Vol.2, pp.758-761,1994.
[20]M. Kazimierczuk and J. S. Modzelewski, “Drive-Transformer less Class-D Voltage Switching Tuned Power Inverter,” IEEE Proc. Vol. 68, pp. 740-741, June 1980.
[21]M. K. Kazimierczuk, “Class D Voltage-Switching MOSFET Power Inverter,” IEE Proc. Pt. B, Electric Power Appl., Vol. 138, pp. 286-296, Non. 1991.
[22]M. R. Osborne, “Design of Tuned Transistor Power Inverters,” Electron. Eng. Vol. 40, No. 486, pp. 436-443, 1968.
[23]Ned Mohan, Tore Undeland and Bill Robins, Power Electronics: Converters, Applications, and Design, Third Edition, John Wiley and Sons, 2003.
[24]P. J. Baxandall, “Transistor Sine-Wave LC Oscillators, Some General Considerations and New Developments,” IEE Proc. Vol. 106, Pt. B, suppl. 16, pp. 748-758, May 1959.
[25]R. L. Steigerwald, “A Comparison of Half-Bridge Resonant Converter Topologies,” IEEE Transactions on Power Electronics, Vol. 8, No. 4, pp.386-395, Oct. 1993.
[26]R. Severns, “Topologies for Three-Element Resonant Converter,” IEEE Transactions on Power Electronics, Vol. 7, No. 1, pp. 89-98, Jan. 1992.
[27]T. P. Ching, Y.C. Jeng, P. C. Chin, and S. H. Yi, “A Fast Maximum Power Point Tracker for Photovoltaic Power Systems,” Proceedings of IECON ’99.Vol. 1,pp. 390-393, 1999.
[28]W. J. Chudobiak and D. F. Page, “Frequency and Power Limitations of Class-D Transistor Inverter,” IEEE J. Solid-State Circuits, Vol. Sc-4, pp.25-37, Feb. 1969.
[29]Y. C. Kuo and T. J. Liang, “Novel maximum-power-point-tracking controller for photovoltaic energy conversion system,” IEEE Transactions on Industrial Electronics, Vol.48, pp.594-601, 2001.
[30]Y. C. Kuo, T. H. Liang, “Novel maximum-power-point-tracking controller for photovoltaic energy conversion system,” IEEE Trans. on Ind. Electron. Vol.48, 2001.
[31]Z. Salameh, F. Dagher and W. A. Lynch, “Step-Down Maximum Power Point Tracker for Photovoltaic System,” Solar Energy Vol.46, pp. 278-282, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top