跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴鐘雄
研究生(外文):C.S.Lai
論文名稱:水冷式微流道散熱器之熱與流場分析
論文名稱(外文):The Study of Thermal and Fluid Analysis in Water-Cooling Micro-Channel Heat Sink
指導教授:梁國柱
指導教授(外文):K.Z.Liang
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:77
中文關鍵詞:微流道散熱器計算流體力學微放電加工頂端間隙熱阻
外文關鍵詞:Micro-Channel Heat SinkComputational Fluid DynamicsMicro Electric Discharge MachiningTip ClearanceThermal Resistance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的在設計一個整體性能佳的水冷式微流道散熱器,透過計算流體力學(Computational Fluid Dynamics, CFD)軟體與微放電加工技術(Micro Electric Discharge Machining)設計製作小型化、冷卻性能佳的水冷式散熱器原型,並將實驗與數值模擬結果做比對與驗證。研究中以CFD軟體COSMOS FloWorks,探討在強制對流的條件下,不同進出口設計、頂端間隙以及鰭片數等不同參數對水冷式微流道散熱器之散熱效果與壓降的影響。
由研究結果得到,在100 W功率、0.6 LPM流量作用下,鰭片型與流道型散熱器的熱阻值分別可達 0.095 ℃/W、0.068 ℃/W之效能;且在140 W高功率時,也有良好的散熱效果。整體評估下,本研究所設計的散熱器具有良好的冷卻性能,而在實驗中發現,本文所設計之水冷散熱器比市售水冷散熱器有更好的散熱效果。
The purpose of this research is to design a heat sink for water-cooling that have good entire performance. With the aid of CFD (Computational Fluid Dynamics), MEDM (Micro Electric Discharge Machining), and the concept of micro-channel design, a heat sink of water-cooling can then be built with the merit of a smaller volume and good cooling performance. In this study, the COSMOS FloWorks software is first applied to analyzing the thermal behavior of the heat sink. Also discussed in this study are parameters including Inlet-Outlet location, Tip Clearance and Fin Number under force convection. From this paper, the experiment results indicate that the thermal resistance of the fin and channel type heat sink can be achieve 0.095 ℃/W, 0.068 ℃/W at input power of 100W, flow rate of 0.6LPM, respectively. Similarly, we can obtain the good cooling performance result in input power of 140W. The experiment results indicate, the heat dissipation of heat sink that we design is better than the ones that sell on the market.
摘 要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 xi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 微流道液冷散熱系統 2
1.2.2 數值模擬液冷散熱系統 4
1.3 散熱器種類 4
1.3.1 氣冷式(Air Cooling) 4
1.3.2 熱管(Heat Pipe) 5
1.3.3 液冷式 (Liquid Cooling) 6
1.4 散熱器製程種類 9
1.5 研究動機 11
1.6 論文架構 12
第二章 理論與數值分析 13
2.1 熱流理論 13
2.1.1 熱對流 13
2.1.2 熱傳導 14
2.1.3 熱阻值 17
2.2 頂端間隙比 17
2.3 液冷式散熱器的數值分析 18
2.3.1 幾何模型建立 18
2.3.2 COSMOS FloWorks分析程序 23
2.3.3 基本條件假設 23
2.3.4 分析步驟 24
第三章 實驗設備與程序 26
3.1 實驗設備 26
3.1.1 液冷系統 26
3.1.2 線切割放電加工機 31
3.2 液冷式散熱器的製作 33
3.2.1 散熱器材質選用 33
3.2.2 散熱模組製作方式 33
3.2.3 工作流體 38
3.3 散熱實驗架構 39
3.3.1 入口恆溫實驗 39
3.3.2 市售Pump模組實驗 39
3.4 實驗程序 40
第四章 結果與討論 41
4.1 數值模擬結果 41
4.1.1 散熱器幾何尺寸之熱效應 41
4.1.2 散熱器幾何尺寸之壓降效應 52
4.1.3 溫度、流場分佈 56
4.1.4 比較散熱器整體性能 62
4.2 實驗結果 63
4.2.1 數值模擬與實驗印證結果 63
4.2.2 市售Pump模組實驗結果 69
第五章 結論與未來展望 72
5.1 結論 72
5.2 未來展望 73
簡 歷 77
1.J. P. Holman著,熱傳遞學,王鎮雄等譯,四版,高立出版社,台北,民國八十九年。
2.王文耕,「電腦CPU散熱片造型對其熱傳效果之影響」,國立成功大學,碩士論文,民國九十二年六月。
3.吳培立,「筆記型電腦散熱系統之研究」,國立成功大學,碩士論文,民國九十三年六月。
4.黃育政,「水冷式微流道散熱器的設計與測試分析」,清雲科技大學,碩士論文,民國九十四年七月。
5.C.Y. Zhao, T.J. Lu, “Analysis of microchannel heat sinks for electronics cooling”, International Journal of Heat and Mass Transfer, 45, pp.4857–4869, 2002.
6.D.B. Tuckerman, R.F.W. Pease, “High-performance heat sinking for VLSI”, IEEE Electron. Dev. Lett. EDL-2, pp. 126-129, 1981.
7.Gabriel Gamrat, Michel Favre-Marinet, Dariusz Asendrych, “Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels”, International Journal of Heat and Mass Transfer, 48, pp.2943–2954, 2005.
8.H.Y. Li, S.M. Chao, G.L. Tsai, “Thermal performance measurement of heat sinks with confined impinging jet by infrared thermography”, International Journal of Heat and Mass Transfer, 48, pp. 5386–5394, 2005.
9.H.Y. Zhang, D. Pinjala, T.N. Wong, K.C. Toh, Y.K. Joshi, “Single-phase liquid cooled microchannel heat sink for electronic packages”, Applied Thermal Engineering, 25, pp. 1472-1487, 2005.
10.J. Esarte, J.M. Blanco, “Improving cooling devices for the hot face of Peltier pellets based on phase change fluids”, Applied Thermal Engineering, 26, pp. 967–973, 2006.
11.J.H. Ryu, D.H. Choi, S.J. Kim, “Numerical optimization of the thermal performance of a microchannel heat sink”, International Journal of Heat andMass Transfer, 45, pp.2823–2827, 2002.
12.Jinliang Xu, Jijun Zhou, Yunhua Gan, “Static and dynamic flow instability of a parallel microchannel heat sink at high heat fluxes”, Energy Conversion and Management, 46, pp.313–334, 2005.
13.Jung Yim Min, Seok Pil Jang, Sung Jin Kim, “Effect of tip clearance on the cooling performance of a microchannel heat sink”, International Journal of Heat andMass Transfer, 47, pp.1099–1103, 2004.
14.Kambiz Vafai, Lu Zhu, “Analysis of Two-layered micro-channel heat sink concept in electronic cooling”, International Journal of Heat and Mass Transfer, 42, pp. 2287-2297, 1997.
15.Ko-Ta Chiang, “Optimization of the design parameters of Parallel-Plain Fin heat sink module cooling phenomenon based on the Taguchi method”, International Communications in Heat and Mass Transfer, 32, pp. 1193–1201, 2005.
16.M. M. Rahman, F. Gui, “Experimental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate”, Adv. Electron. Packaging ASME EEP-4, pp. 495-506, 1993.
17.Reiyu Chein, Yehong Chen, “Performances of thermoelectric cooler integrated with microchannel heat sinks”, International Journal of Refrigeration, 28, pp. 828–839, 2005.
18.R.W. Knight, J.S. Goodling, D.J. Hall, “Optimal thermal design of forced convection heat sinks – analytical”, ASME J. Electron. Packaging, 113, pp. 313-321, 1991.
19.R.W. Knight, D.J. Hall, J.S. Goodling, R.C. Jaeger, “Heat sink optimization with application to microchannels”, IEEE Trans. Components, Hybrids, Manufac. Technol., 15, pp. 832-842, 1992.
20.S. Lee, “Optimum Design and Selection of Heat Sinks”, Proceedings of Eleventh IEEE Semi-Them Sar, “Experimental and numerical study of pressure drop and heat transfer in a single-phase microymposium, pp.48-54, 1995.
21.Seok Pil Jang , Sung Jin Kim, Kyung Wook Paik, “Experimental investigation of thermal characteristics for a microchannel heat sink subject to an impinging jet, using a micro-thermal sensor array”, Sensors and Actuators A, 105, pp.211–224, 2003.
22.Shou-Shing Hsieh, Sheng-Huang Yang, Jenn-Kun Kuo, Chin-Feng Huang, Huang-Hsiu Tsai, “Study of operational parameters on the performance of micro PEMFCs with different flow fields”, Energy Conversion and Management , 47, pp.1868–1878, 2006.
23.Y. A. Cengel, Introduction to Thermodynamics and Heat Transfer, McGraw-Hill, 1997.
24.Weilin Qu, Issam Mudawar, “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink”, International Journal of Heat and Mass Transfer, 45, pp. 2549-2565, 2002.
25.Ying Yang, Z. George Zhang, Eric A. Grulke, William B. Anderson, Gefei Wu, “Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow”, International Journal of Heat and Mass Transfer, 48, pp.1107–1116, 2005.
26.Yoav Peles, Chandan Mishra, Chih-Jung Kuo, Brandon Schneider, “Forced convective heat transfer across a pin fin micro heat sink”, International Journal of Heat and Mass Transfer, 48, pp.3615–3627, 2005.
27.Y.S. Muzychka, “Constructal design of forced convection cooled microchannel heat sinks and heat exchangers”, International Journal of Heat and Mass Transfer, 48, pp.3119–3127, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top