跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱筱軒
研究生(外文):hsiao-hsuan chiu
論文名稱:螺旋流道在流體研磨加工中的應用
論文名稱(外文):Application of spiral channels in abrasive flow machining
指導教授:王阿成
指導教授(外文):A-Cheng Wang
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:84
中文關鍵詞:流體研磨加工螺旋流道表面粗糙度
外文關鍵詞:Abrasive Flow Machiningspiral channelsurface roughness
相關次數:
  • 被引用被引用:8
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流體研磨加工(Abrasive Flow Machining,AFM)是一個操作簡單且經濟實惠的拋光方法,但加工後試片的表面粗糙度受限於其上下單一方向作動的加工機制影響,試片無法達到均勻的表面粗糙度。因此,本研究希望藉由內置不同形狀模仁,改變流道形狀,將AFM的加工機制由上下單一方向作動變成多向性的拋光,進而探討不同形狀流道對表面粗糙度的影響。

在研究過程中,利用CFD-RC模擬介質在不同形狀流道的流動情形。然後藉由觀察介質的流速分佈、剪應變率的變化來判斷試片研磨面是否可以得到均勻的表面粗糙度及較佳的改善率由實驗結果得知,深圓孔洞工件在軸向方向會有表面粗糙度分佈不均勻的現象。經由CFD數值軟體分析後,在深圓孔洞內放置一個自製螺旋模仁,能夠有效改善表面粗糙度的不均勻性及提高表面粗糙度的改善率。
Abrasive flow machining (AFM) is a simple and economical polishing method. However, it is difficult to reach the uniformity of surface roughnesses because of the processing mechanism that polishes the workpiece with axial movements. Therefore, several spiral cores with different shapes are put in the machine to form various channels, that changes the processing mechanism of AFM from simple axial reciprocations to axial and radial ones.

The influence of diverse channels on surface roughnesses is investigated in this research. Flow fields and strain rate changes of media flowing in channels are obtained by CFD-RC simulation to gauge the improvement in surface roughness. Results show variances in surface roughnesses in axial direction of the workpiece with a deep circular hole. Furthermore, it can be meliorated much both uniformity and the improving rate by placing a spiral core in the workpiece.
中文摘要………………………………………………………………………………….. i
英文摘要………………………………………………………………………………….. ii
誌 謝………………………………………………………………………………………. iii
目 錄………………………………………………………………………………………. iv
表目錄…………………………………………………………………………………… vii
圖目錄…………………………………………………………………………………… viii
符號說明………………………………………………………………………………… xi
第一章 緒論 1
1.1 前 言 1
1.2 文獻回顧 3
1.3 研究動機與目的 5
1.4 本論文的架構 6
第二章 研究方法及基本原理 7
2.1 AFM 加工原理 7
2.2 AFM加工特性 10
2.3 AFM的應用範圍 11
2.4 數值方法 14
2.4.1 數值離散方法 14
2.5 有限元素法及有限體積法簡介 15
2.6 CFD-RC簡介 18
2.6.1 CFD-GEOM(前處理) 20
2.6.2 CFD-RC(中處理) 21
2.6.3 CFD-RC的特徵 22
2.6.4 CFD-VIEW(後處理) 22
2.7 統御方程式 24
2.7.1傳輸方程式 24
2.7.2 動量傳輸方程式 25
2.7.3 熱傳方程式 25
2.7.4 質傳方程式 26
2.8 高分子流變學 27
2.8.1 流變行為(Rheological behavior) 27
2.8.2 勁度模數與複合模數 27
2.8.3 理想彈性反應(elastic response) 27
2.8.4 黏性流動(viscous flow) 28
2.8.5 黏彈性質(viscoelastic property) 29
2.8.6 高分子黏度量測 30
2.8.7 毛細管流變儀之理論計算 32
2.9 彈性膠體的Power Law 模型建構理論 34
第三章 實驗設備、材料與方法 35
3.1實驗設備 35
3.2 實驗材料準備 40
3.2.1實驗試片的準備 40
3.2.2 模仁的準備 41
3.3 實驗方法 43
3.3.1 AFM深孔拋光的模擬 43
3.3.2 AFM深孔拋光的實驗 43
3.3.3自製模仁的模擬與實驗 43
第四章 結果與討論 45
4.1 不同形狀流道的模擬結果 46
4.1.1 未放置模仁流道的模擬結果 46
4.1.2 內置圓棒模仁流道的模擬結果 49
4.1.3 內置螺旋模仁流道的模擬結果 52
4.2 不同形狀流道的實驗結果 57
4.2.1 未放置模仁與放置圓棒模仁對試片表面粗糙度的影響 57
4.2.2 放置27°與43°的螺旋模仁對試片表面粗糙度的影響 58
4.2.3 模仁與試片的間隙對表面粗糙度的影響 60
4.3 模擬與自製螺旋模仁的實驗結果 63
4.3.1 自製螺旋模仁的模擬 63
4.3.2 自製螺旋模仁對試片表面粗糙度的影響 71
4.3.3 自製螺旋模仁與試片的間隙對表面粗糙度的影響 71
4.3.4 NCG#100磨料對不同初始表面粗糙度的試片改善情形 74
4.3.5 不同磨料對試片表面粗糙度的影響 75
第五章 結論 76
參考文獻 77
參考文獻
[1] 王阿成、白軒豪、陸建成, 流體研磨加工對工件表面的磨耗研究, 中國機械工程學會第二十三屆全國學術研討會論文集, 2006.
[2] 王阿成、梁國柱、翁世宏、邱筱軒, 複雜孔洞拋光的模具最佳化設計, 第四屆精密機械與製造技術研討會論文集, 2006.
[3] 安永 暢男、高木純一郎著, 唐文聰編譯, 精密機械加工原理, 初版, 台北, 全華科技圖書股份有限公司, 2004.
[4] 李碩仁、賴建璋, 網罩模具曲面電化學機械拋光技術研究, 中國機械工程學會第十八屆全國學術研討會論文集, pp. 711-717, 2001.
[5] 何效聰, 非傳統加工-電化學機械拋光, 元智大學機械工程研究所碩士論文, 1999.
[6] 黃孟祥, 磁氣研磨法於微細電極表面拋光技術之研究, 國立雲林科技大學機械工程研究所碩士論文, 2000.
[7] 張榮顯, 磁力研磨加工應用於放電加工表面改善之研究, 國立中央大學機械工程研究所碩士論文, 2001.
[8] 曹楚南, 腐蝕電化學, 化學工業出版社, 北京, 1994.
[9] 張瑞慶譯, 非傳統加工, 高立圖書有限公司, pp. 61-70, 2000.
[10] 曾信智, 彈性磨料應用於複雜曲面的精拋技術研究, 國立中央大學機械工程研究所博士論文, 2006.
[11] 翁世宏, 應用於孔洞拋光之黏彈性磨料開發, 清雲科技大學機械工程研究所碩士論文, 2005.
[12] A. C. Wang, B. H. Yan, X. T. Lee and F. Y. Huang, “Use of micro ultrasonic vibration lapping to enhance the precision of micro-holes drilled by micro ectordischargemachining”, International Journal of Machine Tools and Manufacture, Vol.42, No. 8, pp. 915-923, 2002.
[13] Available from www.polymersdatabase.com
[14] Extrude Hone Corporation, http://www. extrudehone.com
[15] A. J. Fletcher, J. B. Hull, J. Mackie and Trengove, “Computer Modeling of the Abrasive Flow Machining Process”, Proceedings of the International Conference on Surface Engineering: Current Trends and Future Prospects, pp. 592-601, 1990.
[16] G. K. Lal, “Forces in vertical surface gringing”, International Journal of Machine Tool Design Research 8, pp. 33-43, 1968.
[17] K. Przylenk, “AFM-a process for surface finishing and deburring of workpiece with a complicated shape by means of an abrasive laden medium”, PED, 22ASME, New York, pp. 101-110, 1986.
[18] L. J. Rhoades, “Abrasive flow machining with not-so-silly putty”, Metal Finishing July, pp. 27-29, 1987.
[19] Mc Carty, Ralph C., “Machine with Putty? …Silly Putty??”, Tooling & Production, The Magazine of Metal Working Methods, pp. 54-55, 63, 69-70, 1966.
[20] Perry, B. Winfield, “Abrasive Flow Machining”, AES Magazine, September, pp. 12-15, 1982.
[21] S. M. Pandit and S. Wu, “Time Series and System Analysis with Application”, Robert E. Krieger Publishing Company, Malabar, 1990.
[22] P. J. Davies and A. J. Fletcher, “Assessment of rheological characteristics of abrasive flow machining process”, Proc. Inst. Mech. Engrs., 209, pp.409-418, 1996.
[23] R. E. Williams, K. P. Rajurkar, “Metal removal and surface finish characteristics in abrasive flow machining”, PED, 38ASME, New York, pp. 93-106, 1989.
[24] Rhoades, Larry, “Abrasive Flow Machining: Case Study”, Journal of Materials Processing Technology, Vol. 20, pp. 107-116, 1991.
[25] R. E. Williams, K. P. Rajurkar, “Stochastic modeling and analysis of abrasive flow machining”, Transactions of the ASME, Journal of Engineering for Industry, 114, pp. 74-81, 1992.

[26] R. E. William, K. P. Rajurkar, “Monitoring of abrasive flow machining process using acoustic emission”, S. M. Wu Symposium, vol. I, pp.35-41, 1994.
[27] R. K. Jain and V. K. Jain, P. K. Kalra, “Modeling of abrasive flow machining process: a neural network approach”, Wear, 231, pp. 242-248, 1999.
[28] Rajendra Kumar Jain, Vijay Kumar Jain, “Optimum selection of machining conditions in abrasive flow machining using neural network”, International Journal of Materials Processing Technology, 108, pp.62-67, 2000.
[29] R. K. Jain, V. K. Jain, P. M. Dixit, “Modeling of material removal and surface roughness in abrasive flow machining process”, International Journal of Machine Tool & Manufacture, 39, pp. 1903-1923, 1999.
[30] R. E. Williams and K. P. Rajurkar, “Stochastic modeling and analysis of abrasive flow machining”, Trans. ASME, Journal of Eng. for Industry, 14, pp. 74–81, 1992.
[31] S. Singh, H. S. Shan, P. Kumar, “Wear behavior of materials in magnetically assisted abrasive flow machining”, Journal of materials processing technology, 128, pp. 155-161, 2002.
[32] Sehijpal Singh, H. S. Shan, P. Kumar, “Wear behavior of materials in magnetically assisted abrasive flow machining”, International Journal of Materials Processing Technology, 128, pp.155-161, 2002.
[33] Sehijpal Singh, H. S. Shan, “Development of magneto abrasive flow machining process”, International Journal of Machine Tools & Manufacture, 42, pp. 953–959, 2002.
[34] Sunil Jha, V. K. Jain, “Design and development of the magnetorheological abrasive flow finishing (MRAFF) process”, International Journal of Machine Tools & Manufacture, 44, pp. 1019–1029, 2004.
[35] T. R. Loveless, R. E. Williams, K. P. Rajurkar, “A study of the effects of Abrasive-flow finishing on various machined surfaces”, Journal of Materials Processing Technology, 47, No.1-2, pp.133-151, 1994.
[36] V. K. Jain and S. G. Adsul, “Experimental investigations into abrasive flow machining process”, Int. J. of Machine tools and Manufacture, 40, pp.1103-1021, 2000.
[37] V. K. Jain, “Advanced machining processes”, Allied Publisher, New Delhi, 2001.
[38] R. E. Williams, K. P. Rajurkar and L. J. Rhoades, “Performance Characteristics of Abrasive Flow Machining”, Advanced Machining Technology and Development Association Bulletin, No.27 , Japan, 1991.
[39] V. K. Gorana, V. K. Jain and G. K. Lal, “Experimental investigation into cutting forces and active grain density during abrasive flow machining”, International Journal of Machine Tools & Manufacture, 44, pp. 201–211, 2004.
[40] V. K. Gorana, V. K. Jain, G. K. Lal, “Forces prediction during material deformation in abrasive flow machining”, Wear 260, pp. 128–139, 2006.
[41] Wazer Van, “Viscosity and flow measurement”, Interscience Publishers, pp. 189-191, 1963.
[42] W. B. Perry, Non-traditional Conference Proceedings, pp. 121-127, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top