跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡瑞光
研究生(外文):Ray -Guan Tsai
論文名稱:超臨界流體微細發泡射出成型之聚乳酸/蒙脫土奈米複合材料機械/熱性質之研究
論文名稱(外文):Study on the Mechanical/Thermal Properties of Microcellular Injection Molded Poly-Lactic-Acid (PLA) Nanocomposites
指導教授:黃世欣黃世欣引用關係
指導教授(外文):Shyh-Shin Hwang
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:142
中文關鍵詞:微細發泡射出成型聚乳酸蒙脫土奈米複合材料二氧化碳超臨界流體
外文關鍵詞:MicrocellularPoly-Lactic-AcidCarbon DioxideSuper Critical FluidMontmorillonitesNanocomposites
相關次數:
  • 被引用被引用:8
  • 點閱點閱:622
  • 評分評分:
  • 下載下載:131
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用微細發泡射出成型技術探討製程條件對聚乳酸的機械性質分析,在抗拉強度方面得到拉伸強度隨著熔膠溫度、預塑量、超臨界流體量的提高而上升,而氣泡結構也隨著熔膠溫度、預塑量、超臨界流體量的提高而氣泡尺寸變小及氣泡數量變多。接著研究一般射出級的聚乳酸添加不同比例的蒙脫土混鍊成聚乳酸/蒙脫土奈米複合材料,經傳統射出與超臨界微細發泡射出做比較,以二氧化碳﹙CO2﹚作為發泡劑,進行超臨界流體(SCF)的射出後將成品進行機械性質研究。另一方面針對熱性質和微結構及奈米材料的分析,分別使用X光繞射分析儀(XRD)、動態機械分析(DMA)、示差掃描熱分析儀(DSC)、熱重分析儀(TGA)、掃瞄式電子顯微鏡﹙SEM﹚、穿透式電子顯微鏡(TEM)做探討。在機械性質測試中,聚乳酸隨著蒙脫土比例的提高而呈現下降的趨勢,並且由SEM觀察試片的微結構,並發現拉伸和衝擊試片的氣泡尺寸隨著蒙脫土比例的增加逐漸變大且氣泡數量逐漸減少,而相對的氣泡密度也逐漸降低,可能在於聚乳酸再添加改質蒙脫土做混鍊時,因PLA產生降解的狀況導致添加奈米對於機械性質的影響很大。先由DSC測試可發現添加蒙脫土可以降低結晶溫度,而經超臨界流體以二氧化碳當發泡劑,可以幫助結晶成長率,故能明顯也能降低結晶溫度,而TGA測試中可以檢測出所添加不同比例蒙脫土的含量。在XRD分析添加3%蒙脫土的層間距離為最大,屬於插層型奈米複材,在TEM分析添加5%蒙脫土會出現出小點的團聚現象。
This study investigated the influence of molding conditions on the mechanical properties of microcellular injection molded Poly-Lactic-Acid (PLA) and its nanocomposites. Carbon dioxide is the blowing agent. The process parameters of melt temperature, injection speed, shot size, mold temperature, and super critical fluid level, were used. The results show that shot size is the most important factor to affect the mechanical properties. The tensile strength increases as shot size is increased.
PLA mixed with various contents of clay was studied as well. The nanocomposite structures were examined with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). The thermal properties were studied by Differential Scanning Calorimeter (DSC) and Dynamic Mechanical Analyze (DMA) and Thermogravimetric Analysis (TGA). The results show that the addition of Montmorillonites (MMT) would decrease the tensile/impact strength and crystallization temperature of PLA nanocomposites. This is caused by the speeding degradation of the PLA. XRD results show that MMT is well dispersed except for 5 wt-% of nanocomposites.
目錄
中文摘要..............................................................................................ⅰ
英文摘要.......................................................................................................... ⅱ
誌謝.......................................................................................................... ⅲ
目錄.......................................................................................................... ⅳ
表目錄.......................................................................................................... ⅶ
圖目錄.......................................................................................................... ⅷ


第一章 緒論..................................................................................................................1
1.1前言..................................................................................................................1
1.2生物可分解性高分子材料之概述..................................................................3
1.3傳統複合材料與高分子/奈米複合材料之概述.............................................6
1.3.1高分子/奈米複合材料發展現況與應用...................................................7
1.4傳統射出成型與發泡射出成型之概述..........................................................9
1.41傳統射出成型製程之簡介....................................................................9
1.4.2發泡射出成型製程之簡介...................................................................10
1.4.3超臨界流體微細發泡射出成型製程之簡介......................................11
1.5文獻回顧........................................................................................................13
1.5.1生物可分解性(Biodegradability)高分子簡介....................................13
1.5.2聚乳酸.................................................................................................13
1.5.3奈米複合材料.....................................................................................15
1.5.4 PLA/Clay 之奈米複合材料...............................................................16
1.5.5 超臨界流體微細發泡射出................................................................18
1.6研究動機與目的....................................................................................20
1.7本文架構................................................................................................22
第二章 基本原理........................................................................................................31
2.1高分子/奈米複合材料之分類與製備...........................................................31
2.2無機層材料之特性........................................................................................34
2.2.1蒙脫土..................................................................................................35
2.3發泡塑膠........................................................................................................36
2.3.1發泡材料之分類與原理.....................................................................36
2.3.2發泡劑之分類與原理.........................................................................37
2.4超臨界流體(Super Critical Fluid, SCF)....................................................41
2.5超臨界流體微細發泡射出成型製程............................................................43
2.5.1超臨界流體微細發泡射出成型製程原理.........................................43
2.5.2微細發泡射出成型製程條件對發泡成品的影響.............................46
2.5.3氣泡成長理論.....................................................................................48
第三章 實驗方法........................................................................................................57
3.1實驗規劃與流程...........................................................................................57
3.2實驗材料.......................................................................................................57
3.3實驗設備.......................................................................................................58
3.4實驗方法.......................................................................................................62
3.4.1 X光繞射儀測試(XRD) .....................................................................62
3.4.2微細發泡射出成型之製程條件設定.................................................62
3.4.3機械性質測試.....................................................................................63
3.4.4示差掃瞄熱分析儀(Differential Scanning Calorimeter, DSC).........65
3.4.5熱重分析儀(Thermogravimetric Analyzer,TGA)..........................66
3.4.6掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) ............66
3.4.7穿透式電子顯微鏡 (Transmission Electron Microscope, TEM).......67
3.4.8 DMA測試.....................................................................................67
第四張 結果與討論....................................................................................................84
4.1機械性質探討...............................................................................................84
4.1.1製程條件對拉伸強度影響之探討.....................................................85
4.1.1.1一因子製程條件對拉伸強度影響之探討........................................85
4.1.1.2製程條件對拉伸強度影響之探討..................................................86
4.1.2製程條件對衝擊強度影響之探討....................................................89
4.2熱性質分析..................................................................................................90
4.2.1 DSC測試結果探討............................................................................90
4.2.2 TGA測試結果探討............................................................................91
4.2.3 DMA測試結果探討...................................................................................92
4.3奈米性質的分析...........................................................................................92
4.3.1 XRD測試結果探討............................................................................92
4.3.2 TEM測試結果探討............................................................................93
4.3.3 耐磨耗測試............................................................................93
4.4 SEM對微結構測試分析..............................................................................93
第五章 結論與未來發展方向..................................................................................134
5.1結論.............................................................................................................134
5.2未來發展方向.............................................................................................135
參考文獻....................................................................................................................137
簡 歷.......................................................................................................................142


表目錄
表1.1可生物分解性高分子之應用領域....................................................................24
表1.2 PLA產品掩埋分解狀況...................................................................................24
表1.3為PLA與塑膠產品的廢棄處理方式比較.......................................................25
表1.4日本商品化奈米塑料[11]............................................................................25
表1.5發泡材料之應用...............................................................................................26
表2.1氣體、超臨界流體與液體之物性範圍..............................................................50
表2.2二氧化碳和氮氣之特性....................................................................................50
表4.1 PLA材料種類...................................................................................................96
表4.2 Biodegradable Polymers之性質比較...............................................................96
表4.3生物可分解高分子與PLA在射出成型之物性表..........................................97
表4.4物性換算表.......................................................................................................97
表4.5一因子製程表...................................................................................................98
表4.6最佳化L9製程表..............................................................................................98
表4.7最佳化L9製程表的結果分析..........................................................................99
表4.8最佳製程表........................................................................................................99
表4.9 PLA材料製程表...............................................................................................99
表4.10 PLA材料實驗製程表.....................................................................................100
表4.11 PLA實驗數據分析.........................................................................................100
表4.12 PLA-1不同奈米比例的氣泡密度..................................................................101


圖目錄
圖1.1奈米複材種類....................................................................................................26
圖1.2塑膠加工法之分類............................................................................................27
圖1.3射出成型製程示意圖........................................................................................27
圖1.4微細發泡製程之歷程[38].............................................................................28
圖1.5微細發泡尼龍6之氣泡大小與密度分布........................................................28
圖1.6微細發泡PLA之氣泡大小與密度分布[20].................................................29
圖1.7工業上PLA 的製造法[26].............................................................................29
圖1.8兩種不同形式的乳酸立體結構示意圖[21]...................................................30
圖1.9三種不同形式乳酸的雙環異構物之結構示意圖...........................................30
圖1.10共射成型零件的橫截面[49]........................................................................30
圖2.1奈米複合材料的分類[51]...............................................................................51
圖2.2高分子奈米複合材料之型態[52,53].............................................................51
圖2.3尼龍6/黏土奈米複合材料的TEM照片[54]..................................................51
圖2.4 Smectite Clay之結構圖....................................................................................52
圖2.5蒙脫土之結構圖.........................................................................................52
圖2.6 改質蒙脫土的示意圖.........................................................................................53
圖2.7 改質後的奈米複合材料可分為插層(Intercalation)或剝層(Exfoliation)結構........................................................................................................................................53
圖2.8發泡劑之分類[55].........................................................................................54
圖2.9物相圖[16]......................................................................................................54
圖2.10 SCF輔助塑膠發泡程序....................................................................................55
圖2.11微細發泡射出成型應用示意流程圖................................................................55
圖2.12氣泡和熔膠之介面[16]..................................................................................56
圖3.1 ASTM D638與ASTM D256模具設計3D圖面............................................69
圖3.2 ASTM D638與ASTM D256測試試片2D模具圖面....................................69
圖3.3 ASTM D638與ASTM D256模具實體圖面....................................................70
圖3.4實驗規劃流程圖................................................................................................70
圖3.5德國ARBURG公司420C射出成型機..........................................................71
圖3.6美國Trexel公司SCF輸送系統.......................................................................71
圖3.7美國Trexel公司Mucell界面組件....................................................................72
圖3.8模溫機................................................................................................................72
圖3.9除濕乾燥機.......................................................................................................73
圖3.10拉伸試驗機......................................................................................................73
圖3.11衝擊試驗機......................................................................................................74
圖3.12防潮箱..............................................................................................................74
圖3.13精密電子天平.................................................................................................75
圖3.14布拉格繞射圖[5]..........................................................................................75
圖3.15晶體結構..........................................................................................................76
圖3.16 X-ray繞射儀...................................................................................................76
圖3.17 ASTM D265規範Izod試片尺寸圖示說明...................................................77
圖3.18試片挾持圖示說明..........................................................................................77
圖3.19衝擊試驗簡圖..................................................................................................78
圖3.20 SRV磨耗試驗機..................................................................................................78
圖3.21示差掃描熱分析儀(DSC).............................................................................79
圖3.22熱重分析儀(TGA) ..........................................................................................79
圖3.23歐傑電子、二次電子、背向散射電子以及X射線....................................80
圖 3.24 掃描式電子顯微鏡(SEM).................................................................................80
圖3.25 PLA-1傳統射出試片成品..............................................................................81
圖3.26 PLA-1超臨界微細發泡試片成品...................................................................81
圖3.27 PLA-2試片成品..............................................................................................82
圖3.28 HR-TEM高解析度穿透式電子顯微鏡.........................................................82
圖3.29 動態機械分析儀(DMA)........................................................................................83
圖4.1 PLA材料在傳統射出後經環境測試後的成品實體圖...................................101
圖4.2 PLA材料之熔膠溫的範圍...............................................................................102
圖4.3 PLA-1之DSC分析..........................................................................................102
圖4.4 PLA-2之DSC分析..........................................................................................103
圖4.5 PLA-1和PLA-2一因子製程對抗拉強度的影響............................................103
圖4.6 PLA-2之L9製程對S/N比的影響..................................................................104
圖4.7各種PLA經微細發泡在熔膠溫度對抗拉強度的影響...................................104
圖4.8各種PLA經微細發泡在預塑量對抗拉強度的影響.....................................105
圖4.9各種PLA經微細發泡在SCF含量對抗拉強度的影響..............................105
圖4.10 PLA-1添加不同蒙脫土比例對抗拉強度的影響...............................106
圖4.11 PLA-1基材在傳統射出對應力-應變之分析....................................106
圖4.12 PLA-1添加0.5%蒙脫土比例在傳統射出對應力-應變之分析..........107
圖4.13 PLA-1添加1%蒙脫土比例在傳統射出對應力-應變之分析..............107
圖4.14 PLA-1添加2%蒙脫土比例在傳統射出對應力-應變之分析..............108
圖4.15 PLA-1添加3%蒙脫土比例在傳統射出對應力-應變之分析..............108
圖4.16 PLA-1添加5%蒙脫土比例在傳統射出對應力-應變之分析..............109
圖4.17 PLA-1基材在微細發泡射出對應力-應變之分析.................................109
圖4.18 PLA-1添加0.5%蒙脫土比例在微細發泡射出對應力-應變之分析.......110
圖4.19 PLA-1添加1%蒙脫土比例在微細發泡射出對應力-應變之分析...........110
圖4.20 PLA-1添加2%蒙脫土比例在微細發泡射出對應力-應變之分析...........111
圖4.21 PLA-1添加3%蒙脫土比例在微細發泡射出對應力-應變之分析...........111
圖4.22 PLA-1添加5%蒙脫土比例在微細發泡射出對應力-應變之分析...........112
圖4.23 PLA-1添加不同蒙脫土比例在傳統射出後經不同時間對抗拉強度的影響
....................................................................................................................................112
圖4.24 PLA-2一因子製程對衝擊強度的影響........................................................113
圖4.25 PLA-2一因子製程對減重比的影響............................................................113
圖4.26 PLA-1添加不同蒙脫土比例對抗衝擊強度的影響....................................114
圖4.27 PLA-1添加不同蒙脫土比例對減重比的影響............................................114
圖 4.28 PLA-1基材對DSC分析.....................................................................................115圖 4.29 PLA-1添加0.5%蒙脫土比例對DSC分析........................................................115
圖 4.30 PLA-1添加1%蒙脫土比例對DSC分析...........................................................116
圖 4.31 PLA-1添加2%蒙脫土比例對DSC分析...........................................................116
圖 4.32 PLA-1添加3%蒙脫土比例對DSC分析...........................................................117
圖 4.33 PLA-1添加5%蒙脫土比例對DSC分析...........................................................117
圖4.34 PLA-1添加不同蒙脫土比例在微細發泡射出對DSC分析......................118
圖4.35 PLA-1添加不同蒙脫土比例在微細發泡射出對DSC結晶溫度的分析...118
圖4.36 PLA-1添加不同蒙脫土比例在微細發泡射出對DSC熔點的分析...........119
圖4.37 PLA-1添加不同蒙脫土在傳統射出對TGA分析.......................................120
圖4.38 PLA-1添加不同蒙脫土在傳統射出對DMA剛性分析...............................121
圖4.39 PLA-1添加不同蒙脫土在微細發泡射出對DMA剛性分析........................121
圖4.40 PLA-1添加不同蒙脫土在傳統射出對DMA-TG分析..................................122
圖4.41 PLA-1添加不同蒙脫土在微細發泡射出對DMA-TG分析.........................122
圖4.42 PLA-1添加不同蒙脫土比例在傳統射出對XRD分析..............................123
圖4.43 PLA-1添加不同蒙脫土比例在傳統射出比例對XRD分析.....................123
圖4.44 PLA-1添加不同蒙脫土比例在微細發泡對XRD分析..............................124
圖4.45 PLA-1(1%)奈米複材之SAD分析晶體結構...............................................125
圖4.46 PLA-1(1%)奈米複材之TEM分析...............................................................126
圖4.47 PLA-1(5%)奈米複材之TEM分析...............................................................126
圖4.48 PLA-1添加不同蒙脫土比例對磨耗體積損失分析.........................................127
圖4.49閉孔式氣泡被貫穿破裂成開放式氣泡之SEM微結構圖..........................127
圖4.50選取氣泡位置之SEM微結構圖...................................................................128
圖4.51 PLA在熔膠溫度變化之SEM拉伸試片微結構圖.....................................129
圖4.52 PLA在預塑量變化之SEM拉伸試片微結構圖..........................................130
圖4.53 PLA在SCF含量變化之SEM拉伸試片微結構圖.....................................131
圖4.54 PLA-1添加不同比例蒙脫土之SEM氣泡微結構圖..................................132
圖4.55 PLA-1添加不同蒙脫土比例對氣泡密度的分析圖........................................133
圖4.56 PLA-1添加不同蒙脫土比例對的泡尺寸的分析圖........................................133
1.Journal of Polymer Science Part A: Polymer Chemistry Volume 43, Issue 23, Pages: 6116-6133 Tadeusz Biela, Andrzej Duda, Harald Pasch, Karsten Rode, Date: 1 December 2005.
2.Journal of Polymer Science Part B: Polymer Physics Volume 44, Issue 2, Pages: 312-325Miroslaw Pluta, Marie-Amélie Paul,Michaël Alexandre, Philippe Dubois, Date: 15 January 2006.
3.徐國財、張立德,奈米複合材料,五南圖書公司,台北市,民國九十三年。
4.顧宜主編,林金福、林尚明、段維新、葉逸彥、嚴建國審定,複合材料,新文京開發出版有限公司,台北縣,民國九十一年。
5.廖建勛,「高分子奈米複合材料之結構與物性」,塑膠資訊,第17期,21~25頁,民國八十七年。
6.廖建勛,「高分子散逸結構與物性」,塑膠資訊,第22期,14~25頁,民國八十七年。
7.李世陽,「奈米高分子複合材料之新市場應用機會」,化工資訊,15~19頁,民國九十年五月。
8.張國揚,「奈米複材之歷年來研究成果」,化工資訊,10 ~ 14頁,民國九十年五月。
9.尹宗凡, 蒙托土界面改質對對位聚苯乙烯奈米複合材料結晶型態之研究, 義守大學材料工程研究所碩士論文, ( 2002 )。
10.Blumstein, A.Bull, “A. Etude des polymerizations en couche adsorbee I”, Chim.Soc., pp.899-906, 1961.
11.廖建勛,「納米高分子複合材料」,工業材料,第125期,114~115頁,民國八十六年五月。
12.李世陽,「奈米高分子複合材料之新市場應用機會」,化工資訊,15~19頁,民國九十年五月。
13.張國揚,「奈米複材之歷年來研究成果」,化工資訊,10 ~ 14頁,民國九十年五月。
14.Jonathan S. Colton and Nam P. Suh, “Nucleation of Microcellular Foam: Theory and Practice”, Polymer Engineering and science, Vol. 27, No. 7, pp.500, 1987.
15.V. Martini, J. E., Nam. P. Suh, and F. A. waldman, “Microcellular Closed Cell Foams and their Method of Manufacture”, U.S. Patent, 4,473, pp.665, 1984.
16.Kelvin T., Okamoto, Microcellular Processing, Hanser Gardner publications, Inc., Cincinnati, 2003.
17.Suh, N. P., Microcellular Plastics, In Stevenson, J. F. (ed.) Innovation in Polymer Processing, Hanser Publisher, Inc., Munich, 1996.
18.Turng, L.S. “Special and Emerging Injection Molding Processes”, Journal of Injection Molding Technology, Vol. 5, pp.160, 2001.
19.J. C. Middleton; A. J. Tipton, Biomaterials, Vol. 21, pp2335~2346, 2000.
20.R. A. Gross; B. Kalra, Science, Vol. 297, pp803~807, 2002.
21.J. Lunt, Polymer Degradation and Stability, Vol. 59, pp145~152, 1998.
22.Journal of Polymer Science Part B: Polymer Physics Volume 44, Issue 1, Pages: 94-101 Xiaofei Ma, Jiugao Yu, Ning Wang, Date: 1 January 2006.
23.Macromolecular Bioscience Volume 5, Issue 11, Yoshiro Kitamura, Akio Kishida, Hidekazu Yoshizawa, Pages: 1066-1073 Satoru Nishino, Date: November 4, 2005.
24.Macromolecular Bioscience Volume 4, Issue 9, Bruce Harte, Susan Selke, Pages: 835-864 Rafael Auras, Date: September 16, 2004.
25..Journal of Applied Polymer Science Volume 88, Issue 4, Jianming Zhang, Xiaoshu Zhou, Deyan Shen, Pages: 973-979 Guobao Zhang, Date: 25 April 2003.
26.E. T. H. Vink; K. R. Ra’bago; D. A. Glassner; P. R. Gruber, Polymer Degradation and Stability, Vol. 80, pp403~419, 2003.
27.V. Krikorian; D. J. Pochan, Chem. Mater., 2003.
28.L. Cartier; T. Okihara; Y. Ikada; H. Tsuji; J. Puiggali; B. Lotz, Polymer, Vol. 41, pp8909~8919, 2000.
29.S. S. Ray; P. Maiti; M. Okamoto; K. Yamada; K. Ueda, Macromolecules, Vol. 35, pp3104~3110, 2002.
30.蔡宗燕, 工業材料125 期, pp120~128, 1997.5。
31.Journal of Polymer Science Part B: Polymer Physics Volume 44, Issue 2, Marie-Amélie Paul,Michaël Alexandre, Philippe Dubois, Pages: 312-325Miroslaw Pluta, Date: 15 January 2006.
32.Journal of Polymer Science Part B: Polymer Physics Volume 44, Issue 2, Marie-Amelie Paul, Michael Alexandre, Philippe Dubois, Pages: 299-311 Miroslaw Pluta, Date: 15 January 2006.
33.Macromolecular Symposia Volume 239, Issue 1, Mi-Ra Kim, Hyun-Jeong Lee, Ildoo Chung, Kwon Taek Lim, Sangik Jeon, Won-Ki Lee Pages: 91-96 Jin-Kook Lee, Date: June 2006,.
34.Polymer Engineering & Science Volume 46, Issue 10, Lih-Sheng Turng, Shaoqin Gong, Kurt Erlacher, Pages: 1419-1427 Tongnian Li, Date: October 2006.
35.N. Ogata; G. Jimenez; H. Kawai; T. Ogihara, Journal of Polymer Science: Part B: Polymer Physics, Vol. 35, pp389~396, 1997.
36.P. Maiti; K. Yamada; M. Okamoto; K. Ueda; K. Okamoto, Chem. Mater., Vol. 14, pp4654~4661, 2002.
37.J. H. Chang; Y. U. An; D. Cho; E. P. Giannelis, Polymer, Vol. 44, pp3715~3720, 2003.
38.V. Krikorian; D. J. Pochan, Chem. Mater., 2003.
39.J. H. Lee; T. G. Park; H. S. Park; D. S. Lee; Y. K. Lee; S. C. Yoon; J.D. Nam, Biomaterial, Vol. 24, pp2773~2778, 2003.
40.H. Wang, C. Zeng, M. Elkovitch, L.J Lee, and KW Koelling, “Processing and Properties of Polymeric Nano-Composites”, Polymer Engineering and Science 41(11), pp. 2036-2046, 2001.
41.Hrishikesh Kharbas, Paul Nelson, Mingjun Yuan, Shaoqin Gong, and Lih-Sheng Turng, “Effects of Nano-Fillers and Process Conditions on the Microstructure and Mechanical Properties of Microcellular Injection Molded Polyamide Nanocornposites”, Polymer Composites, Vol. 24, No. 6, December, 2003.
42.Mingjun Yuan, Lih-Sheng Turng, Shaoqin Gong, Daniel Caulfield, Chris Hunt, and Rick Spindler, “Study of Injection Molded Microcellular Polyamide-6 Nanocomposites”, Polymer Engineering And Science, Vol. 44, No. 4, April, 2004.
43.Kramschuster, A, Cavitt R., Ermer, D., and Turng, L. S., “Warpage Comparison between Microcellular and Conventional Injection Molding”, SPE ANTEC Tech. Papers,, pp.573-577, May. 2005.
44.Hwang, S. S., Chen, S. C., and Chung, M. H., “Study on the Mechanical Properties of Microcellular Injection Molded Parts”, SPE ANTEC Tech. Papers , pp.776-780, May. 2005.
45.Satish K. Goel and Eric J. Beckman,“Generation of Microcellular Polymeric Foams Using Supercritical Carbon Dioxide. II Cell Growth and Skin Formation”, Polymer Engineering and Science, Vol. 34, No. 14. p. 1148, Nov., 1994.
46.V. Kumar, “Microcellular Plastics:Does Microcellular Structure Always Lead to an Improvement in Impact Properties”, SPE ANTEC Tech. Papers, 38, pp.7, 2002.
47.P. H. Nam, P. Maiti, M. Okamoto, T. Kotaka, T. Nakayama, M. Takada, M. Ohshima, A. Usuki, N. Hasegawa, and H. Okamoto, “Foam Processing and Cellular Structure of Polypropylene/Clay Nanocomposites”, Polym. Eng. Sci., 42, pp.1907, 2002.
48.C. Zeng, X. Han, L. J. Lee, K. W. Koelling, and D. L. Tomasko, “Structure of. Nanocomposite Foams”, SPE ANTEC Tech Papers, 60(2), pp.1504, 2002.
49.Lih-Sheng Turng, “Microcellular Injection Molding”, SPE ANTEC Tech. Papers,, pp.686-690, May. 2003.
50.J. E. Martini, F. A. Waldman and N. P. Suh,. “The Production and Analysis of microcellular Thermoplastic Foams”, SPE ANTEC Tech. Papers, Vol.28, pp.674,1982.
51.王世敏,許祖勛,傅晶,奈米材料原理與製備,五南圖書公司,台北市,民國九十三年。
52.沈銘原,「碳纖維補強奈米蒙脫土/環氧樹脂複合材料」,逢甲大學,碩士論文,民國九十年。
53.蔡宗燕,「奈米級無機層材之開發與應用」,工業材料,第125期,121 ~ 129頁,民國八十六年五月。
54.漆宗能,尚文宇,聚合物/層狀矽酸鹽奈米複合材料,五南圖書公司,台北市,民國九十三年。
55.王昭欽,「發泡之原理及其在押出成型加工之應用」,工業技術人才培訓計畫講義,民國九十一年三月。
56.吳舜英,徐敬一合編,塑膠發泡成型技術,高分子工業雜誌社出版,臺灣復文興業公司,臺南市,民國九十二年。
57.Amon, M. and Denson, CD, “A Study of the Dynamics of Foam Growth - Analysis of the. Growth of Closely Spaced Spherical Bubbles”, Polym. Eng. Sci., 24, pp. 1026-1034, 1984.
58.BK Kim, YM Lee, and HM Jeong, “Physical Properties of ABS/SMA/Nylon-6 Ternary Blends : Effect of Compounding. Sequence”, Polymer, 34(10), pp.2075-2080, 1993.
59.Shyh-Shin Hwang, Der-Kuang Lin, Pe-Ming Hsu and Zhi-Xuan Ke, “Warpage Comparison between Microcellular and Conventional Injection Molding”, The First Taiwan/Japan International Polymer Processing Conference, pp.54, October 17-19, Taiwan, 2005.
60.Shyh-Shin Hwang, Shyh-Hong Weng, Pe-Ming Hsu and Zhi-Xuan Ke, “Shrinkage/Warpage Optimization by Microcellular Injection Molding”, Super Green 2005, Poster Presentations pp-48 pp.92, November 20-23, NTU Taipei Taiwan, 2005.
61.Eisenberg, P., Tulin, M.P., In Handbook of Fluid Dynamics, V Streeter (Ed.) , McGraw-Hill , New York, 1961.
62.Turng, L.S. “Special and Emerging Injection Molding Processes”, Journal of Injection Molding Technology, Vol. 5, pp.160, 2001.
63.Alexander Chandra, Shaoqin Gong, Mingjun Yuan, Lih-Sheng Turng, “Microstructure and Crystallography in Microcellular Injection Molded Polyamide-6 Nanocomposite and Neat Resin”, Polymer Engineering and Science, pp.52-61, 2005.
64.Y. Kojima, T. Matsuoka, H. Takahashi, T. Kurauchi, “Crystallization of a Nylon-6-Clay Hybrid by Injection Molding Under. Elevated Pressure”, Journal of Materials Science Letters, v12, pp.1714-1715, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top