(3.238.174.50) 您好!臺灣時間:2021/04/18 16:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃俊彥
研究生(外文):Chun-Yen Huang
論文名稱:奈米粒子對電子構裝用膠黏著強度與電化學特性之影響研究
論文名稱(外文):Deposition of Nanoparticles on the Characteristics Electronic Packaging Adhesives and Electrochemistry characteristic influence research
指導教授:李正國李正國引用關係
指導教授(外文):Cheng-Kuo Lee
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:84
中文關鍵詞:耐高溫電訊接頭電子構裝環氧樹脂奈米粉末。
外文關鍵詞:connectorelectronic packagingbonding epoxynanoparticle.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的在於應用機械、材料、電子構裝等相關技術,開發耐高溫電子電訊傳輸接頭。此接頭必須能耐溫達1000℃以上,並且其電子與電訊合乎正常功能運作,其構裝結構能耐高溫環境之考驗。異質材料構裝技術研究,異質材料接合劑構裝接合研究亦為本研究之重點方向,包含各種耐高溫金屬材料/高溫陶瓷材料/電訊導線等異質材料構裝接合研究,公母接頭拉脫機構開發,以及不同材料構裝接頭之耐高溫特性與電訊特性亦為如何完成耐高溫金屬材料/高溫陶瓷材料/電訊導線等異質材料構裝接合之重要評估目標。本研究主要實驗項目以三種耐高溫接合樹脂與不同合金在120℃、150℃、200℃、280℃等溫度,維持不同時間後之接合抗拉強度試驗以及抗高電壓之介電試驗、絕緣測試,希望藉由實驗結果找出最佳之接著劑以及發展高溫合金材料之運用,。可知道在氧化鋁(Al2O3)板和銅之接合試驗中發現火焰自熄性改質型環氧樹脂在150°C有最大的抗拉強度,均大於一液型AB膠及單液型環氧樹脂,並且火焰自熄性改質型環氧樹脂在200°C時仍有100kgf/mm2以上的抗拉強度。一液型AB膠具有較高的耐熱溫度,應用於Inconel 718高溫合金之接合,加熱至280℃時,則有80kgf/mm2以上的抗拉強度,有利於高溫陶瓷接頭耐熱及抗拉強度之脫拉接頭黏著固定。而且三種膠對於經500V和1000V等高電壓作用下之絕緣測試與介電試驗都有極高的絕緣電阻(9999 MOhm)及非常低的洩漏電流(0.03、0.07 mA)。本研究完成耐高溫電訊接頭之材料設計與製造接合製程技術,利用其樹脂耐熱與絕緣特性,將可延長使用壽命。並因添加不同的的奈米粒子及比例,發現環氧樹脂和金屬表面間添加入奈米粒子,有對於黏附著力的影響, 而優選的添加不同奈米粒子,使環氧樹脂改進黏著力量,對於環氧樹脂在熱性質與機械性質有所助益。奈米粉體近年來已廣泛被開發,由於其具備粉體粒徑小、高比表面積等量子特性,已成為提升現階段產品改質之應用添加劑主要開發方向,如提升耐燃特性(Fire Retardant, FR)、提升熱變形溫度、增加導電或導磁(EMI shielding)、增加機械強度等附加功能,並且環氧樹脂的黏著強度隨著奈米碳管的增加而增加並對於0.5M H2SO4+ 2 ppm NaF腐蝕環境下對於鋁鎂合金的電化學腐蝕與3.5% NaCl磨耗腐蝕試驗保護性也有顯著的增進改善趨勢。
The primary purpose of the present study is to evaluate the influence of different nanoparticles on the high temperature adhesion properties between different electronic packaging adhesives and Inconel 718 alloy substrate. The packaging technology and bonding epoxy of dissimilar materials is also the crucial research direction of this project, including packaging and bonding for various materials of high temperature resistant metal/ceramic/conduction line, the design and manufacturing of connector mechanism, also the evaluation of the temperature resistance and electrical signal transformation characteristics. The principal experimental of present study is the tensile test of three high temperature resistant bonding epoxies with different alloys under the temperatures of 120, 150, 200 and 280℃ maintained at different times as well as the dielectric and insulation tests. It is hoped to find out the optimal bond epoxy with high temperature alloy for defense industrial application. Three different nanoparticles including nano-Al2O3, carbon nanotube and nanofil, were added to evaluate if there is any enhancing effect of the adhesion strength. The experimental results indicate that the E-532AH-532B epoxy has a maximum tensile strength at 150℃ in the tensile test for ceramic (aluminum oxide, Al2O3) bonding with copper plate, and possesses larger strength as comparing with 62202B- liquid type AB gel and signal type epoxy E-1385B. Furthermore, E-532AH-532B epoxy still has the strength above 100 kgf/mm2 at temperature of 200℃. 62202B- liquid type AB gel has a higher temperature resistance as comparing with the other two epoxies. There is a strength above 80 kgf/mm2 heated to 280℃ as applied to the bonding of Inconel 718 alloys. Therefore, it is useful for bonding the high temperature resistant ceramic connector. Finally, the results of the tensile adhesion tests indicated that all the three kinds of nanoparticles had an enhancing effect to improve the adhesion strength for E-532AH-532B epoxy. Both nanofil and nano-Al2O3 had the similar effect for 62202B- liquid type AB gel. However, only nano- Al2O3 has the improving effect for signal type epoxy E-1385B.
And wear in 3.5% NaCl solution, the nanoparticles epoxy composite coatings as comparing with 5083 aluminum alloy substrate show lower coefficient of friction and less wear loss. This evidences that epoxy composite coatings have an excellent protection of wear corrosion failure. Further performing potentiodynamic polarization test during wear in 0.5 M 0.5M H2SO4+ 2 ppm NaF solution, the composite coatings also indicate a better wear corrosion resistance as comparing with nanoparticles CNT epoxy coating and 5083 aluminum alloy substrate, moreover the coating surface without any significant wear failure phenomena.
中文摘要..................................................................i
英文摘要.................................................................iii
致謝......................................................................v
圖目錄...................................................................vii
表目錄....................................................................xi
第一章 前言...............................................................1
第二章 文獻回顧...........................................................2
2.1耐高溫電子電訊傳輸接頭...........................................2
2.2環氧樹脂簡介........................ .............................6
2.2.1環氧樹脂的發展歷史............................................6
2.2.2環氧樹脂的特性與應用..........................................7
2.3奈米混成材料簡介.................................................8
2.4腐蝕的定義......................................................10
2.4.1腐蝕的種類...................................................10
2.5磨耗的定義......................................................12
2.5.1影響耐磨耗性的因素..........................................12
2.5.2磨耗類型.....................................................12
2.5.3磨耗機構.....................................................15
2.6磨耗腐蝕......................................................16
2.7電化學量測......................................................17
2.7.1 極化原理....................................................17
2.7.2 混合電位原理................................................19
第三章 實驗步驟..........................................................21
3.1實驗方法..................................................22
3.1.1樹脂的特性及奈米粉體介紹................................23
3.2抗拉強度試驗..............................................28
3.3介電試驗、絕緣測試..........................................31

3.4四點探針量測電阻率 ............................................. 31
3.5奈米粒子粉末的添加對於高溫合金黏著強度影響..............33
3.6觀察拉伸表面破壞結構........................................ 33
3.7腐蝕磨耗試驗..................................................34
3.8電化學腐蝕試驗................................................34
第四章 實驗結果與討論....................................................36
4.1拉伸試驗......................................................36
4.1.1 Inconel 718高溫合晶徒步數之拉伸分析....................36
4.1.2 SAE 4130合金鋼塗佈樹脂拉伸分析.......................37
4.1.3 17-4 PH不銹鋼拉伸分析...................................39
4.1.4 Al2O3及銅片塗佈樹脂拉伸分析...............................43
4.1.5 Al2O3及銅板塗佈樹脂拉伸分析...............................44
4.2介電試驗、絕緣測試結果.....................................46
4.2.1 乾磨耗試驗..................................................50
4.2.2 腐蝕磨耗試驗................................................55
4.3奈米粒子粉末的添加對於高溫合金強度影響..........................60
4.4四點探針法量測電阻率對於奈米粒子粉末的添加......................62
4.5磨耗試驗........................................................63
4.6電化學腐蝕分析..................................................71
第五章 結論..............................................................81
參考文獻.............................................................83
1. 高信敬,奈米科技專刊,2002,9,p124~p127。
2. 林昀緯、陳金源,工業材料,1997,5,p52~125。
3. 魏碧玉、賴明雄,工業材料, 1999,9, p153。
4. 賴耿陽 譯著 環氧樹脂應用實務,p13~45。
5. 胡志明、鍾松政,奈米科技專刊,2002,5,p197。
6. 林昀緯 、 陳金源工業材料,1997,5,p147~165。
7. 蔡宗燕,化工資訊,1998,2,p 120 ~128。
8. 柯賢文,腐蝕及其防制,全華科技圖書(股)有限公司,民國九十年,P23~78。
9. 劉國雄、鄭晃忠、李勝隆、林樹均、葉均蔚 等,工程材料科學,全華科技圖書,台北,民國八十六年,P346~384。
10.陳豐彥、何信威,燒結摩擦材料,粉末冶金手冊,中華民國粉末冶金協會,民國八十四年,P13~72。
11.林冠宇,熱處理對經過無電鍍鎳處理後之鐵粉的化學組成及結構影響研究,國立成功大學,碩士論文,民國九十二年。
12.Gilman, J. W.;Jackson, C. L.;Morgan, A. B.;Hayyis, R., Jr.;Manias,
E.;Giannelis, E. P.;Wuthenow, M.;Hilton, D.;Phillips, S. H., Chem.
Mater., 2000, 12, 1866.
13. Wang, Z.;Pinnavaia, T. J. Chem. Mater., 1998, 10, 3769.
14. Phillip B. Messersmith and Emmanuel P. Giannelis, Chem. Mater.,
1994, 6, 1719.
15. Lan, T.;Kaviratna, P. D.;Pinnavaia, T. J. Chem. Mater., 1994, 6, 573.
16. Tyan, H.-L.;Liu, Y.-C.;Wei, K.-H. Chem. Mater., 1999, 11, 1942.
17. Georga R. Brubaker, Corrosion Chemistry, 1979.
18. Lee, H. and Neville, K., Handbook of Epoxy Resins, McGraw-Hill,
New York, 1967
19. T. Saegusa, Pure and Appl. Chem., 1995, 67, 1965.
20. Lee, H. and Neville, K., Handbook of Epoxy Resins, McGraw-Hill, New
York, 1967
21. Y. Wang;N. Herron, Solid State Commun, 1991, 77, 33.
22. F. E. Karasz;P. N. Prasad;Y. Pang, US Patent 5130362, 1992, July.
23. S. P. Armes;S. Gottesfeld;J. G. Berry, Polymer, 1991, 32, 2325.
24. S. Kobayashi;T. Saegusa;Makromol. Chem., 1992, 1-9, 64.
25. C. G. Gebelein;Biometic. Polymer, New York, 1990.
26. N. G. Fontana and N. D. Greene, “Corrosion will cost U.S. an estimated126 billion dollars in 1982”,Ibid, Feb. 1983.
27. S. H. Ahn, J. H. Lee, J. G. Kim, and J. G. Han, “Localized corrosion mechanisms of the multilayered coatings related to growth defects”, Surface and Coatings Technology, 177-178, pp.638, 2004.
28. C. K. Fang, C. C. Huang, T. H. Chuang, “Synergistic effects of wear and corrosion for Al2O3 particulate-reinforced 6061 aluminum matrix composites”, Metallurgical and Materials Transactions A, 30A, pp. 643-651, 1999
29. I. Iwasaki, S. C. Riemer, J. N. Orlich, “Corrosive and abrasive wear in ore grinding”, Wear, 103, pp. 253-267, 1985.
30. S. W. Watson, B. W. Madsen, S. D. Cramer, “Wear-Corrosion study of white cast irons”, Wear, 181-183, 469-475, 1995.
31. R. P. Tracy, G. J. Shawhan. Materials Perform, 29(7), pp.65, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔