(3.230.143.40) 您好!臺灣時間:2021/04/23 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳嘉慶
研究生(外文):Chia-Ching Chen
論文名稱:土壤pH與有機組成分對芘溶出影響之研究
論文名稱(外文):Influence of Soil pH and Organic Component on Pyrene Leaching
指導教授:王敏昭王敏昭引用關係張簡水紋張簡水紋引用關係
指導教授(外文):Min-Chao WangShui-wen Chang chien
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:89
中文關鍵詞:稻稈灰燼土壤pH有機碳有機肥料
外文關鍵詞:organic carbonsoil pHrice straw ashorganic fertilizerPyrene
相關次數:
  • 被引用被引用:1
  • 點閱點閱:280
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
近年來環境荷爾蒙已成重要環境議題,其中多環芳香族碳氫化合物(PAHs)是廣受重視之環境荷爾蒙之ㄧ,而土壤為PAHs之重要蓄積庫,許多研究均指出有機質為影響土壤中PAHs移動之重要因子,而農民常施用化學肥料或有機肥料以增加土壤之肥力,此行為除提供土壤有機質外亦直接或間接改變土壤pH,在二者交互作用下對土壤中PAHs移動之影響更顯重要,但甚少有相關研究。本研究以台灣農耕面積最大之沖積土及紅壤為供試土壤,石英砂作為對照組,以Pyrene為代表污染物分別進行了不同土壤pH、有機質含量及土壤pH與有機質對土壤中Pyrene溶出影響之共同效應試驗,以瞭解不同pH與有機質含量管理境況下Pyrene之溶出情形。試驗結果顯示,污染土壤在無調整pH情況下,影響Pyrene溶出之主要因素為土壤本身所含之有機質含量,添加有機肥料或稻稈灰燼均降低了土壤中Pyrene之回收率,且添加有機肥料與稻稈灰燼後土壤中有機碳含量與Pyrene回收率呈線性負相關,增加相同土壤有機碳含量對三種土壤中Pyrene回收率之影響依序為石英砂>紅壤>沖積土,而稻稈灰燼與有機肥料相較之下可固定較多的Pyrene,於本試驗中稻稈灰燼提供1%的有機碳分別可降低石英砂、沖積土與紅壤中43%、31%與33%的回收率。增加沖積土有機碳含量至1.35%,經過約30天的調整pH處理後,在酸性狀態之回收率高於鹼性狀態;紅壤有機碳含量增加至1.0%時,於酸性狀態下之回收率明顯高於未調整與調鹼處理者,而調鹼處理與未調整者之回收率並無顯著差異。
In recent years the environment hormone has become the important environment subject. Polycyclic Aromatic Hydrocarbons (PAHs) was one kind of Environmental Hormones which was constantly respected. The soil is PAHs stores up the storehouse importantly, a lot of researches indicated that organic matter was an important factor influenced the PAHs moving in soil. The farmer often employs the chemical fertilizer or the organic fertilizer increases the soil fertility. This behavior besides provides the soil ulmin also direct or indirect change soil pH. The influence of PAHs moveing in soil was more concerned under organic matter and pH co-effected. In this study, As supply take alluvial soils and red soils was used for experiment which are the main category soil for farming in Taiwan, the quartz sand take the control group, and Pyrene was spiked into soils to simulate the contaminated soils. In order to know the Pyrene leaching situation under different soil pH level and organic matter content management, the batch experiments were examined. The batch experiments were examined. Results showed that under original pH level the main factor affected the Pyrene leaching of contaminated soils was the original soil organic matter content. In the experiment, added organic fertilizer or rice straw ash into soil both decreased the Pyrene recovery efficiency, and the soil organic content (SOC) after added fertilizer or ash had a negative correlation with Pyrene recovery efficiency. The decrease of recovery efficiency under the same SOC has an order quartz sands > red soils > alluvial soils. Moreover, rice straw ash has a higher capacity to fix Pyrene than organic fertilizer, adding rice straw ash into soils could provide 1% organic carbon and decreased the Pyrene recovery efficiency of quartz sands, alluvial soils and red soils 43%, 31% and 33% separately. Increasing alluvial soils organic carbon content to 1.35%, after 30 days fixed pH level processes, the recovery efficiency under acidity condition was higher than alkalinity condition. Increasing the red soils organic carbon content to 1.0%, the recovery efficiency under acidity state significant higher than none treated and fixed to alkalinity treatment, and it was no significant difference between none treated and fixed to alkalinity treatment.
目錄
中文摘要 I
英文摘要 II
謝誌 IV
目錄 V
表目錄 VIII
圖目錄 IX
緒言 XI

第一章、PAHs於環境之宿命 1-1
一、PAHs之來源與特性 1-1
二、環境中PAHs之分佈 1-5
三、影響PAHs傳輸之因素 1-7
四、PAHs之降解與固定 1-9
參考文獻 1-11

第二章、土壤pH值對Pyrene溶出之影響 2-1
一、前言 2-1
二、前人研究 2-2
3.1 試驗材料 2-4
3.2 試驗方法 2-10
四、結果與討論 2-15
4.1 不同萃取方法之回收率試驗 2-15
4.2 污染前改變土壤pH對Pyrene溶出之影響 2-17
4.3 受Pyrene污染後當土壤pH改變對Pyrene溶出之影響 2-21
五、結論與建議 2-25
參考文獻 2-26

第三章、不同有機質與含量對Pyrene溶出之影響 3-1
一、前言 3-1
二、前人研究 3-2
三、材料與方法 3-5
3.1試驗材料 3-5
3.2 試驗方法 3-8
四、結果與討論 3-10
4.1不同有機肥料添加量對Pyrene溶出之影響 3-10
4.2 不同稻稈灰燼添加量對Pyrene溶出之影響 3-14
五、結論與建議 3-18
參考文獻 3-19

第四章、土壤有機質與pH影響Pyrene溶出之共同效應 4-1
一、前言 4-1
二、前人研究 4-2
三、材料與方法 4-4
3.1 試驗材料 4-4
3.2 試驗方法 4-6
四、結果與討論 4-8
4-1 有機質與pH對Pyrene溶出之共同影響-石英砂 4-8
4-2 有機質與pH對Pyrene溶出之共同影響-沖積土 4-12
4-3 有機質與pH對Pyrene溶出之共同影響-紅壤 4-14
五、結論與建議 4-16
參考文獻 4-17
附錄 附錄1

表目錄
表1-1 有機物揮發性分類表 1-2
表1-2 國際組織對PAHs致癌性之研究 1-4
表2-1 供試土壤之理化性質 2-6
表2-2 Pyrene之特性 2-7
表2-3 研究中所使用之儀器廠牌與型號 2-8
表2-4 研究中所使用之材料與藥品 2-9
表2-5 管柱與批次萃取方法之條件 2-13
表2-6 高效能液相層析儀分析條件 2-14
表2-7 三種土壤使用H3PO4與KOH調整後之pH 2-17
表2-8 Pyrene回收率與土壤性質相關性矩陣表-污染前調整pH 2-20
表2-9 Pyrene回收率與土壤性質相關性矩陣表-污染後調整pH 2-24
表3-1 有機肥料與稻稈灰燼來源與基本性質 3-7
表3-2 添加有機肥料與稻稈灰燼後土壤有機碳與Pyrene回收率之比較 3-12
表4-1 調整土壤至不同酸鹼狀態下Pyrene回收率之比較 3-9

圖目錄
圖1 研究架構圖 XII
圖2-1 土壤pH對Pyrene溶出性之影響試驗流程 2-5
圖2-2 調整土壤pH流程圖 2-11
圖2-3 管柱萃取裝置 2-12
圖2-4 兩種方法對三種土壤萃取之回收率比較 2-15
圖2-5 受Pyrene污染前不同土壤pH下Pyrene回收率之比較 2-18
圖2-6 污染土於不同pH下Pyrene回收率之比較 2-21
圖2-7 土壤受Pyrene污染前、後不同pH下回收率之比較 2-22
圖3-1 不同有機質及含量對Pyrene溶出性之影響試驗流程 3-6
圖3-2 不同有機肥料添加量土壤Pyrene回收率之比較 3-10
圖3-3 Pyrene與土壤吸附之概念模型 3-13
圖3-4 不同稻稈灰燼添加量土壤Pyrene回收率之比較 3-14
圖3-5 稻稈灰燼之掃描式電子顯微鏡照片 3-16
圖3-6 土壤有機碳含量與Pyrene回收率之關係與趨勢 3-17
圖4-1 土壤有機質與pH影響Pyrene溶出共同效應試驗流程圖 4-5
圖4-2 添加有機肥料後調整土壤至不同酸鹼狀態下Pyrene回收率之比較 4-10
圖4-3 調整土壤至不同酸鹼狀態下Pyrene回收率之比較 4-11
圖4-4 有機物與土壤吸附之概念模型 4-12
王一雄、陳尊賢、李達源,土壤污染學,國立空中大學,初版,第 339-340頁,(1995)
王新傳,「作物需肥診斷技術-鮑氏土壤機械分析法」,台灣省農試所特刊,第13期,第27-29頁(1981)
平立鳳、駱永明,「有機質對多環芳烴環境行為影響的研究進展」,土壤,第四卷,第37期,第362頁-369頁(2005)
李久海、董元華、曹志洪、王輝、安琼、胡正義、楊林章、林先貴、尹睿,「6000年以來水稻土剖面中多環芳烴的分布特徵及來源初探」,土壤學報,第44卷,第1期,第41-46頁(2007)
林淵淙,「餐廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵」,碩士論文,國立成功大學環境工程學系,台南(2000)
袁紹英、張碧芬,「土壤受多環芳香族碳氫化合物之整治技術與問題評析」,第六屆土壤污染防治研討會論文集,臺北,第十九至三六頁(1997)
張世宗,「農業廢棄物焚化溫度對PAHs廢氣產生之影響」,博士論文,台灣大學生物產業機電工程研究所,台北(2005)
張怡塘,「化學傳輸行為對土壤微生物分解多環芳香烴化合物之影響」,博士論文,國立中央大學環境工程研究所,桃園(2006)
張碧芬、袁紹英,「多環芳香族碳氫化合物(PAHs)之環境流布及其生物分解」,行政院環境保署署環境檢驗所雙月刊,第22期(1999)
曹紅英、陶澍、王喜龍、曹軍、李本、徐福留、劉文新、沈偉然、秦寶平、孫韌,「天津地區菲的空間分異多介質歸趨模型」,環境科學,第24期,第5卷,第54-59頁(2003)
羅雪梅、楊志峰、何孟常、劉昌明,「土壤/沉積物中天然有機質對疏水性有機污染物的吸附作用」,土壤,第一卷,第37期,第25頁-31頁(2005)
謝兆申、王明果,「台灣土壤」,國立中興大學土壤調查試驗中心,第128-130頁(1989)
Accardi-Dey, A., and Gschwend, P. M., “Assessing the combined roles of natural organic matter andblack carbon as sorbents in sediments,” Environ. Sci. Technol. Vol.36, pp.21-29(2002)
Achtnich, C., Fernandes, E., Bollag, J. M., Knackmuss, H. J.,and Lenke, H., “Convalent binding of reduced metabolities of [15N3] TNT to soil organic matter during a bioremediation process analysed by 15N NMR spectroscopy,” Environ. Sci. Technol, Vol.33, No.24, pp.4448-4456(1999)
Aiken, G. R., McKnight, D. M., Wershaw,R. L., and MacCarthy, P., “An introduction to humic substances in soil, sediment, and water,” Humic Substance in soil, Sediment, and Water, John Wiley & Sons, New York,pp.4-5 (1985)
Aronstein, B. N., Calvillo, T. Y., and Alexander, M., “Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil,” Environ. Sci. Technol, Vol.25, pp.1728-1731(1991)
Bogan, B. W., and Trbovic, V., “Effect of sequestration on PAH degradability with Fenton’s regent; Roles of total organic carbon, humin, and soil porosity,” Journal of Hazardous Materials B, Vol.100, pp.285-300(2003)
Brady, N. C., and Weil, R. R., “Elements of the nature and properties of soils,” Prentice-Hall, New Jersey(2002)
Bastiaens, L., “Isolation and characterisation of polycyclic aromatic hydrocarbon- degrading bacteria, evaluation of the use of the isolates in soil slurry bioremediation,” Leuven: Katholieke Universiteit Leuven(1998)
Carter, C. W., and Suffet, I. H. “Binding of DDT to dissolved humic materials,” Environ. Sci. Technol, Vol.16, pp.735-740(1982)
Cerniglia, C. E., and Heitkamp, M. A., Microbial degradation of PAH in the aquatic environment, In: Metabolism of polycyclic aromatic hydrocarbons in the environment, Varanasi U. (eds.), Boca Raton, Fla., CRC Press, Inc., U.S.A.(1989)
Chao, H. R., Lin, T. C., and Heieh, J. H., “Compostion and characterixtics of PAH emissions from Taiwanese temples,” J. Aerosol Sci. Vol.1, pp.303-304(1997)
Chiou, C. T. and Schmedding, D. W. “Partitioning of organic compounds in octanol-water systems,” Environ. Sci. Technol, Vol.16, pp.4-10(1982)
Chiou, C. T., Kile, D. E., and Malcome, R. L., “Soiption of Vapor of Some Organic Liquids on Soil Humic Acid and its Relation to Partitioning of Organic Compounds in Soil Organic Matter, Environ. Sci. Technol, Vol.22, pp.298-303(1988)
Chiou, C. V., Mcgroddy, S. E., and Kile, D. E., “Water solubility enhancement DDT and Trichlorobenzene by some surfactant below and above the critical micelle concentration,” Environ. Sci. Technol., Vol.32, pp.264-269(1998)
Conte, P., Zena, A., Pilidis, G. and Piccolo, A., “Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances,” Environmental Pollution, Vol.112, pp.27-31(2001)
Cook, J. W., Hewett, C. L., and Hieger, I., “The Isolation of Cancer-Producing Hydrocarbon from Coal Tar, Part I, II and III,” Journal of Chemical Society, pp. 395-421(1933).
Cotham, W.E., and Bidleman, T. F., “Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Air at an Urban and a Rural Site near Lake Michigan,” Environ. Sci. Technol, Vol.229, pp.2782–2789(1995)
Daisey, J. M., Hodgson, A. T., Fisk, W. J., and Brinke, J. T., “Volatile Organic Compounds in Twelve California Office Building; Classes, Concert Rations and Sources,” J. Air and Waste Management Association, Vol.50, Dec., (1994).
Daniel, R. O., John, R., and Ross, M., “Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments,” Marine Chemistry, Vol.86, pp.169–184(2004)
Dipple, A., Searle, C. E. (Ed.), “In Chemical Carcinogens,” ACS Monograph 173, American Chemical Society, Washington, D.C. (1976).
Edwards, N. T., “Polycyclic aromatic hydrocarbons (PAH''s) in the terrestrial environment - a review,”J. Environ. Qual, Vol.12, pp.427-441(1983)
Ghosh, U., Gillette, J. S., Luthy, R. G., and Zare, R. N., “Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles,” Environ. Sci. Technol., Vol.34, pp.1729-1736(2000)
Ghosh, U., Talley, J. W., and Luthy, R. G., “Particle-scale investigation of PAH desorption kinetics and thermodynamics from sediment,” Environ. Sci. Technol., Vol.35, pp.3468-3475(2001)
Ghosh, U., Zimmerman, J. R., and Luthy, R. G., “PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability,” Environ. Sci. Technol., Vol.37, pp.2209-2217(2003)
Gustafsson, O., Nilsson, N., and Buchell, T. D., “Dynamic Colloid-Water Partitioning of Pyrene through a Coastal Baltic Spring Bloom,” Environ. Sci Technoi, Vol.35, pp.4001-4006(2001)
Harrison, M.R., Smith, D.J., and Luhana, L., “Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham,” U.K. Environ. Sci. Technol, Vol.30, pp. 825-832(1996)
Hirner, A. V., Pestke, F. M., Busche, U., and Eckelho, A. L., “Testing contaminant mobility in soils and waste materials,” J. Geochem. Exploration, Vol.64, No.1-3, pp.127-132(1998)
Holbrook, R. D., Love, N. G., and Novak, J. T., “Investigation ofsorption behavior between pyrene and colloidal organic carbon from activated sludge processes,” Environ. Sci. Technol, Vol.38, pp.4987-4994(2004)
Hur, J., and Mark, A., “Schlautman, Influence of Humic Substance Adsorptive Fractionation on Pyrene Partitioning to Dissolved and Mineral-Associated Humic Substances,” Environ. Sci. Technol., Vol.38, pp.5871-5877(2004)
Hwang, S., and Cutright T. J., “The impact of contact time on pyrene sorptive behavior by a sandy-loam soil,” Environmental Pollution, Vol.117, pp.371-78(2002)
Jones, K. D., and Tiller, C. L., “Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: a comparison of dissolved and clay bound humic,” Environ. Sci. Technol., Vol.33, pp.580-587(1999)
Karim, B., “Marie-Odilesimonnot and Miche Lsardin PAHs and Organic Matter Partitioning and Mass Transfer from Coal Tar Particles to Water,” Environ. Sci. Technol., Vol.40, pp.6038-6043(2006)
Kim, Y. J., and Osako, M., “Leaching characteristics of polycyclic aromatic hydrocarbons (PAHs) from spiked sandy soil,” Chemosphere, Vol.51, pp.387-395(2003)
Kim, Y. J., and Osako, M., “Error causing factors in leaching tests of hydrophobic organic pollutants (1),” 12th Annual Conference of Japan Society of Waste Management Experts, pp.1124-1126(2001)
Kim, Y.J., Lee, D.H., and Ohsako, M., “Effect of dissolved humic matters on the leachability of PCDD/F from fly ash-Laboratory experiment using aldrich humic acid,” Chemosphere, Vol.47, No.6, pp.599-605(2002)
Krauss, M., and Wilcke, W. Sorption strength of persistent organic pollutants in particle-size fractions of Urban soils. Soil Science Society of America Journal, Vol.66, pp.430-437(2002)
Lamoureux, E. M. and Brownawell, B. J., “Chemical and biological availability ofsediment-sorbed hydrophobic organic contaminants,” Environmental Toxicology and Chemistry, Vol.18, pp.1733-1741(1999)
Laor, Y., and Rebhun, M., “Complexation–flocculation: A new method to determine binding coefficients of organic contaminants to dissolved humic substances,” Environ. Sci. Technol, Vol.31, No.12, pp.3558-3564(1997)
Lee, C. L., and Kuo, L. J., “Quantification of the dissolved organic matter effect on the sorption of hydrophobic organic pollutant: application of an overall mechanistic sorption model,” Chemosphere, Vol.38, pp.807-821(1999)
Lee, W. J., Wang, Y. F., Lin, T. C., Chen, Y. Y., Lin, W. C., Ku, C. C. and Chen, J. T., “PAH characteristics in the ambient air of traffic-source,” Sci. Total Environ, Vol.159, pp.185-200(1995)
Lueking, A. D., Huang, W., and Schwarz, S., “The chemical structure of soil/sediment organic matter and it role in the sequestration and biovailability of sorbed organic contaminants,” Environ. Qual., Vol.29, pp.317-323(2000)
Markus, N, Annemarie, M. S., and Christopher, H. “Monitoring polycyclic aromatic hydrocarbons (PAHs) and heavy metals in urban soil, compost and vegetation,” Environmental Science and Pollution Research, Vol.2 No.2, pp.83-89(1995)
McLean, E. O., “Soil pH and lime requirement, Methods of soil analysis. Part 2: Chemical and microbiological properties, Page A. L. et al. (eds.), Second edition, Madison, WI, USA, Agronomy Monograph, Vol.9, pp.199-224(1982).
Miller, M. M., Wasik, S. P., Huang, G. L., Shiu, W. Y. and Mackay, D. “Ralationships between octanol-water partition coefficient and aqueous solubility,” Environ. Sci. Technol, Vol.19, pp.522-529(1985)
Mulder, E., Brouwer, J. P., Blaakmeer, J., and Frénay J. W., “Immobilisation of PAH in waste materials,” Waste Management, Vol.21, pp.247-253(2001)
Nam, K., and Kim, J. Y., “Role of loosely bound humic substances and humin in the bioavailability of phenanthrene aged in soil,” Environmental Pollution, Vol.118, pp.427-433(2002)
Nieman, J. K. C., Sims, R. C., Sims, J. L., Sorensen, D. L., Mclean, J. E., and Rice, J. A., “[14C] Pyrene Bound Residue Evaluation Using MIBK Fractionation Method for Creosote-Contaminated Soil,” Environ. Sci. Technol, Vol.33, pp.776-781(1999)
Poerschmann, J., and Kopinke, R. D., “Sorptlon of Very Hydrophobic Organic Compounds(VHOCs) on Dissolved Humic Organic Matter(DOM).2.Measurement of Sorption and Application of a Flory-Huggins Concept To Interpret the Data,” Environ. Sci. Technol, Vol.35, pp.1142-1148(2001)
Rhoades, J. D., Soluble salts, Methods of soil analysis (Page, A. L., Miller, R. H., and Keeney, D. R. eds.), Part2. 2nd ed, Agronomy Monogaphy 9, ASA and SSSA. Madision, Wisconsin, pp.167-179 (1982).
Rhoades, J. D., Cation exchange capacity, Methods of soil analysis ( Page, A. L., Miller, R. H., and Keeney, D. R. eds.), Part2. 2nd ed, Agronomy Monogaphy 9, ASA and SSSA. Madision, Wisconsin, pp.149-157 (1982).
Ribes, A, Grimalt, J. O., and Garcia, C. J. T., “Polycyclic aromatic hydrocarbons in mountain soils of the subtropical Atliantic,” J. Environ. Qual, Vol.32, pp. 977~987(2003)
Robinson, K. G., Farmer, W. S., and Novak, J. T., “Availability of sorbed toluene in soils for biodegradation by acclimated bacteria,” Water Res., Vol.24, pp.345-350(1990)
Santella, R. M., Gammon, M. D., Zhang, Y. J., Motykiewicz, G., Young, T. L., Hayes, S. C., Terry, M. B., Schoenberg, J. B., Brinton, L. A., Bose, S., Teitelbaum, S. L., and Hibshoosh, H., “Immunohistochemical analysis of polycyclic aromatic hydrocarbon-DNA adducts in breast tumor tissue,” Cancer Letters, Vol.154, pp. 143-149(2000)
Schlautman, M. A. and Morgan, J. J. “Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials,” Environ. Sci. Technol, Vol.27, pp.961-969(1993)
Schwarzenbach, R. P., and Westall, J., “Transport of Non-Polar Organic Compounds from Surface Water to Groundwater Laboratory Sorption Studies,” Environ. Sci. Technol., Vol.11, pp.1360-1367(1981)
Shimizu, Y. and Liljestr, H. M. “Sorption of polycyclic aromatic hydrocarbons onto natural solids: determination by fluorescence quenching method,” Wat. Sci. Technol., Vol.23, pp.427-436(1991)
Simonich, S. L., and Hites, R. A., “Vegetation-atmosphere partitioning ofpolycyclic aromatic hydrocarbons,” Environ. Sci. Technol, Vol.28, pp.939-943(1994)(b)
Simonich, S. L., and Hites, R. A., “Organic pollutant accumulation in vegetation,” Environ. Sci. Technol, Vol.29, pp.2905-2914(1995)
Simonich, S. L., and Hites, R. A., “Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere,” Nature, Vol.370, pp.49-51(1994)(a)
Song, J., Peng, P., and Huang, W., “Black carbon and kerogen in soils and sediments quantification and characterization,” Environ. Sci. Technol., Vol.36, pp.3960-3967(2002)
Tiessen, H., Bettany J. R., and Stewart J. W. B., “An improved method for the determination of carbon in soils and soil extracts by dry combustion,” Commun. Soil Sci Plant Anal., Vol.12, pp.211-218(1981).
van der Sloot, H. A., “Leaching behavior of waste and stabilized waste materials; Characterization for environmental assessment purpose,” Waste Manage. Res, Vol.8, No.33, pp.215-228(1990)
Van Noort, P. C. M., Jonker, M. T. O., and Koelmans, A. A., “Modeling maximum adsorption capacities of soot and soot-like materials for PAHs and PCBs,” Environ. Sci. Technol, Vol.38, pp.3305-3309(2004)
Voice, T. C., Rice, C. P., and Weber, W. J., Jr. “Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems,” Environ. Sci. Technol, Vol.17, pp.513-518(1983)
Weissenfels, W. D., Klewer, H. J., and Langhoff, J., “Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity,” Appl. Microbiol. Biotechnol, Vol.36, pp.689-696(1992)
Wild, S.R., and Jones, K. C., “Polynuclear aromatic hydrocarbons in the United Kingdom environment: A prelininary source inventory and budget,” Environ. Pollut, Vol.88, pp.91-108(1995)
Wagrowski, D. M., and Hites, R. A., “Polycyclic aromatic hydrocarbons in urban, suburban, and rural vegetation,” Environ. Sci. Technol, Vol.31, pp.279-282(1997)
Wahlström, M., Laine-Ylijoki, J., Pihlajaniemi, M., and Ojala, M., “Leaching of PCBs and Chlorophenols from contaminated soil and waste––Influence of leaching test characteristics,” Wascon(2000)
Yang, S. Y. N., Connell, D. W., Hawker, D. W., and Kayal, S. I., “Polycyclic aromatic hydrocarbons in air, soil and vegetation in the vicinity of an urban roadway,” Sci. Total Environ, Vol.102, pp.229-240(1991)
Yang, Y., Ratté, D., Smets, B. F., Pignatello J. J., and Grasso D., “Mobilization of soil organic matter by complesing agents and impliccaitions for polycyclic aromatic hydrocarbons desorption,” Chemosphere, Vol.43, pp.1013-1021(2001)
Yong, J. K., and Masahiro, O., “Leaching characteristics of polycyclic aromatic hydrocarbons (PAHs) from spiked sandy soil,” Chemosphere, Vol.51, pp.387-395(2003)
Zandere, M., “Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons Marcel Dekker,” Inc.(1985)
Zhou, J. L., Rowland, S., and Mantoura, R. F. C., “The formation of humic coatings on mineral particles under simulated estuarine conditions-a mechanistic study,” Wat. Res, Vol.28, pp.571-579(1994)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔