跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張志豪
研究生(外文):Chi-hao Chang
論文名稱:奈米級δ-MnO2與TiO2對芘污染土壤之催化轉化作用
論文名稱(外文):Catalytic Transformations of Pyrene in Its Contaminated Soil by Nano-scale δ-MnO2 and TiO2
指導教授:王敏昭王敏昭引用關係張簡水紋張簡水紋引用關係
指導教授(外文):Min-chao WangShui-wen Chang Chien
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:89
中文關鍵詞:催化降解PyreneTiO2δ-MnO2紅壤沖積土
外文關鍵詞:catalytic degradationpyreneTiO2δ-MnO2red soilalluvial
相關次數:
  • 被引用被引用:3
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水體與土壤環境以及空氣之有機污染物,大部分有害於人體之健康,甚至是致癌物質。而土壤受多環芳香烴化合物(PAHs)污染問題已愈受重視,PAHs主要源自於空氣中燃燒及車輛廢氣排放等PAHs沉降;或是油品洩漏於土壤與地下水中。本研究以溶膠-凝膠法(Sol-Gel method)自行製備奈米級δ-MnO2與TiO2,再以高效能雷射粒徑分析儀(High performance particle sizer, HPPS)、場發射掃描式電子顯微鏡(Field emission scanning electron microscope, FE-SEM)、掃描式電子顯微鏡裝配能量分散光譜儀(Scanning electron microscope-energy dispersive spectroscopy, SEM-EDS),以及X-射線繞射儀(X-ray Diffractormeter, XRD),確認合成奈米粒子之尺寸、型態及元素能譜組成。配製後之氧化物以高效能雷射粒徑分析儀分析,δ-MnO2與TiO2粒徑分佈依次分別為 220 ~ 1100 nm與 396 ~ 1990 nm;以場發射掃描式電子顯微鏡觀察,粒徑分佈為 80 ~ 200 nm與 20 ~ 40 nm;δ-MnO2以掃描式電子顯微鏡裝配能量分散光譜儀檢測,Mn及O之原子含量分別為 23.34%及 68.73%,而Ti及O之原子含量分別為 19.68%及 80.32%;另以X-射線繞射鑑定,證實δ-MnO2與TiO2之晶型為片錳礦與銳鈦礦。以人工污染方式添加pyrene於沖積土及紅壤中(1:10000, w/w),然後土壤維持於1/3 bar水份含量進行光照及無光照下之反應5小時,以批次方法萃取系統中殘留之pyrene,研究結果顯示光催化反應確實可加速污染物pyrene之降解;不同土壤添加催化劑後對污染物pyrene之催化降解能力:石英砂>紅壤>沖積土,此外,紅壤尤其是沖積土與pyrene之反應,會抑制pyrene之被催化降解,δ-MnO2催化降解污染物pyrene之反應比TiO2催化快速且完全,僅需要5%的δ-MnO2就可達到催化轉化的效果。此試驗研究成果所得之諸試驗參數,期能應用於現地有機污染水體與土壤環境的復育整治。
Most organic pollutants in water and soil environments and in atmosphere are harmful to human health and are even carcinogen. Contamination of polycyclic aromatic hydrocarbons (PAHs) in soil environment is increasing attention by scientists. PAHs are originated from various precipitations of combustion in air and vehicle emission, and leaking of petroleum products from tanks into soil and groundwater. This study was to prepare nano-scaled δ-MnO2 and TiO2 by sol-gel methods and their sizes, forms and compositions of energy spectroscopy of elements were identified by high performance Laser particle sizer (HPPS), scanning electron microscope equipped with energy disperse spectroscope (SEM-EDS). The particle size ranges of δ-MnO2 and TiO2 revealed by HPPS were 220–1100 and 396–1990 nm, respectively, while those by FE-SEM were 80–200 and 20–40 nm. The compositions of elements in terms of atomic ratios determined by SEM-EDS were 23.3% Mn and 68.7% O for δ-MnO2 and 19.7% Ti and 80.3% O for TiO2. The mineralogy of δ-MnO2 and TiO2 characterized by X-ray diffraction were birnessite and rutile, respectively. The red soil or alluvial soil was spiked with pyrene (1:10,000, w/w) and the soils kept at 1/3 bar soil moisture tention, then irradiated with or without solar radiation to conduct the catalytic transformation of pyrene by δ-MnO2 and TiO2. The data showed that the photochemical catalysis may truly catalytic degradation of pyrene. Correspondingly, the data showed that sequence degradation of pyrene by δ-MnO2 or TiO2 in different soils system was: quartz sand>red soil>alluvial. Moreover, the red soil and especially alluvial soil suppress catalytic degradation of pyrene. The kinetics of catalytic degradation of pyrene was much larger by δ-MnO2 than by TiO2 at the initial stage of reaction period. The catalytic degradation of pyrene and related PAHs by TiO2 and especially δ-MnO2 in soil and associated environments thus can not be overlooked. Further, the significant differences of catalytic degradation of pyrene between the systems with and without solar radiation can be used to apply to the practical procedure of remediation engineering of PAHs contaminated soils on site as well as off site.
誌 謝I
摘 要II
AbstractIII
目 錄IV
圖目錄VII
表目錄IX
第一章 前言1
1-1 研究緣起1
1-2 研究目的2

第二章 前人研究3
2-1 多環芳香烴碳氫化合物(Polycyclic aromatic hydrocardons, PAHs)3
2-1-1 PAHs特性與來源3
2-1-2 PAHs污染現況7
2-1-3 PAHs之危害8
2-1-4 國內外PAHs研究與污染整治現況10
2-2 催化13
2-2-1 催化反應與原理13
2-2-2 光催化反應原理14
2-2-3 光觸媒反應15
2-2-4 二氧化錳之簡介15
2-2-5 二氧化錳應用於環境污染整治16
2-2-6 二氧化鈦簡介18
2-2-7 二氧化鈦應用於環境污染整治20

第三章 材料與方法23
3-1 配製添加樣品(spiked)模擬含pyrene污染之土壤23
3-2 試驗土壤基本性質分析23
3-3 製備pyrene污染之土壤樣品26
3-4 Pyrene污染之土壤樣品27
3-4-1 索氏萃取方法(NIEA M165.00C)29
3-4-2 加壓流體萃取方法(NIEA M189.00C)29
3-4-3 批次萃取方法(Mara et al., 2007)30
3-4-3 批次萃取31
3-5 HPLC定量分析31
3-6 奈米級δ-MnO2與TiO2製備32
3-6-1 δ-MnO2之製備 32
3-6-2 TiO2之製備33
3-7 奈米級δ-MnO2與TiO2特性分析35
3-7-1場發射掃描式電子顯微鏡 35
3-7-2高效能粒徑分析儀35
3-7-3 X-光繞射儀36
3-7-4 傅利葉轉換紅外線光譜儀36
3-8 奈米級δ-MnO2與TiO2反應36
3-8-1 催化劑對污染物光催化與無光催化之反應動力學37
3-8-2 添加不同比例催化劑對污染物光催化與無光催化之反應動力學37
3-9 研究架構38

第四章 結果與討論38
4-1 不同土壤之萃取方法比較39
4-1-1 索氏萃取39
4-1-2 加壓流體萃取 40
4-1-3 連續批次萃取 41
4-1-4 各種萃取技術之實驗結果比較42
4-1-5 索氏萃取對不同萃取方法之比較43
4-1-6 加壓流體萃取與連續批次萃取之比較43
4-1-7 不同土壤對萃取效率之影響44
4-2 奈米級δ-MnO2與TiO2鑑定45
4-2-1 奈米級δ-MnO2與TiO2粒徑尺寸鑑定 45
4-2-2 奈米級δ-MnO2與TiO2物種成分分析 49
4-3 奈米級δ-MnO2與TiO2反應 51
4-3-1 Pyrene污染石英砂之反應動力學51
4-3-2 Pyrene污染沖積土之反應動力學52
4-3-3 Pyrene污染紅壤之反應動力學53
4-3-4 添加不同比例的δ-MnO2對污染物光催化與無光催化之反應動力學54
4-3-5 添加不同比例的TiO2對污染物光催化與無光催化之反應動力學57
4-4 反應動力模式62
4-5 傅利葉轉換紅外線光譜分析64
第五章 結論72
參考文獻73
附 錄80
行政院環境保護署,土壤酸鹼值測定法,NIEA S410.61C。
行政院環境保護署,土壤中陽離子交換容量-醋酸鈉法,NIEA S202.60A。
行政院環境保護署,索氏萃取法,NIEA M165. 00C。
行政院環境保護署,加壓流體萃取法,NIEA M189.00C。
林財富與鄭仲凱,現地化學氧化技術之發展與案例分析,第八屆土壤及地下水污染整治研討會論文集,2003。
林淵淙,2000,餐廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵,碩士論文,國立成功大學環境工程學系,台南。
袁紹英與張碧芬,1999,土壤受多環芳香族碳氫化合物污染之生物整治,第六屆土壤污染防治研討會論文集,第19-36頁。
陳琪婷、黃春蘭、楊磊、蔡明惠,2003,以二氧化錳催化降解水中污染物之研究,中華民國環境工程學會第二十八屆廢水處理技術研討會論文集,台中。
張碧芬與袁紹英,1999,多環芳香族碳氫化合物(PAHs)之環境流布及其生物分解,行政院環境保署署環境檢驗所雙月刊,第22期。
黃昆德、黃文彥、高志明、林明勳,2004,高錳酸鉀氧化法處理三氯乙烯污染地下水之反應機制探討及去瓶頸反應研究,中華民國環境工程學會第二屆土壤與地下水研討會論文集,台南。
楊金鐘,1999,污染土壤之整治復育技術,第五屆土壤污染防治研討會論文集,第47-47頁。
董瑞安與吳先琪,1999,利用界面活性劑配合生物復育處理受油品污染場地之技術開發,完成報告,國立清華大學原子科學系。
葉桂君,林麗卿,彭素蘭,1999,芳香族碳氫化合物在土壤-界面活性劑吸附微胞系統吸附性之探討,第14屆廢棄物處理技術研討會論文集。
Araña, J., J. A. Herrera Melián. J. M. Doña Rodr´ýguez. O. González D´ýaz. A. Viera. J. Pérez Peña. P. M. Marrero Sosa., and V. Espino Jiménez. 2002. TiO2-photocatalysis as a tertiary treatment of naturally treated Wastewater. Catalysis Today 76: 279–289.
Carmichael, L. M. and F. K. Pfaender. 1997. Polynuclear aromatic hydrocarbon methabolism in soils: relationship to soil characteristics and preexposure. Environ. Toxicol. Chem. 16: 666-675.
Chang, M. C. 1998. Effects of surfactants and Fenton’s reagents on extraction and distruction of phenanthere in spiked sand, Ph. D. dissertation, Department of Chemical Engineering, Chemistry, and Environmental Science, New Jersey Institute of Technology, Newark, NJ, U.S.A.
Chinn, L. J. 1991. Selection of Oxidation in Synthesis- Oxidation at the Carbon Atom, Marcel Dekker Inc., New York, 72.
Conte, P., A. Zena. G. Pilidis., and A. Piccolo. 2001. Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances. Environmental Pollution, 112: 27-31.
Daniel, R. O., R. John., and M. Ross. 2004. Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments. Marine Chemistry, 86: 169–184.
Doong, R. A. and Y. T. Lin. 2004. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Research 38:1733–1744.
Fukahori, S., H. Ichiura. T. Kitaoka., and H. Tanaka. 2003. Photocatalytic decomposition of Bisphenol A in water using composite TiO2- zeolite sheets prepared by a papermaking technique. Environmental Science and Technology 37(5): 1048-1051.
Gee, G. W., J. W. Bauder., and A. K. In. 1986. Methods of soil analysis. Part I. 2nd ed.Agronomy 9: 383-409.
Gu, Z. R., A. P. Chen. Z. M. Dai., and H. C. Gu. 2000. Mechanism of mutual enhancing ability of purification between photocatalysis agent and active carbon on air purification sieve. Chemistry and Industry of Forest Products 20(1): 6-10.
Hamerski, M., J. Grzechulska., and A. W. Morawski. 1999. Photocatalytic purification of soil contaminated with oil using modified TiO2 powders. Sol. Energy, 66: 395-399.
Holbrook, R. D., N. G. Love., and J. T. Novak. 2004. Investigation ofsorption behavior between pyrene and colloidal organic carbon from activated sludge processes. Environ. Sci. Technol. 38: 4987-4994.
Ichiura, H., T. Kitaoka., and H. Tanaka. 2003. Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique. Chemosphere 50: 79-83.
Jokic, A., M. C. Wang. C. Liu. A. I. Frenkel., and P. M. Huang. 2004.Integration of the polyphenol and Maillard reactions into a unifiedabiotic pathway for humification in nature: the role of -MnO2. Organic Geochem. 35: 747-762.
Jones, D.M., S. J. Rowland, A. G. Douglas, and S. Howells. 1986. An examination of the fate of Nigerian crude oil in surface sediments of the Humber estuary bygas chromatography and gas chromatography-mass spectrometry. International Journal of Environmental Analytical Chemistry 24: 227–247.
Krauss, M. and W. Wilcke. 2002. Sorption strength of persistent organic pollutants in particle-size fractions of Urban soils. Soil Science Society of America Journal, 66: 430~437
Linsebigler, A. L., G. Lu., and J. T. Yates Jr. 1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95:735-758.
Luthy, R. G., D. A. Dzombak, C. A. Peters, S. B. Roy, A. Ramaswami, D. V. Nakles, and B. R. Nott. 1994. Remediating tar-contaminated soils at manufactured gas plants sites-Technological challenges. Environ. Sci. Technol. 28:266A-276A.
Manickam, M., P. Singh. T. B. Issa. S. Thurgate., and R. O. Marco. 2004. Lithium Insertion into Manganese Dioxide Electrode in MnO2/Zn Aqueous Battery Part I. A Preliminary Study. J. Power Sources. 130:254-259.
Mara, C., J. C. Seaman. A. A. Jara. B. Fuentes. M. L. Mora., and M. C. Diea. 2007. Adsorption behavior of 2,4-dichlorophenol and pentachlorophenol in an allophonic soil. Chemosphere 67: 1354-1360.
McKenzie, R. M. 1971. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral Magazine, 38: 493-502.
Menzie, C. A., B. B. Potocki, and J. Santodonato. 1992. Exposure to Carcinogenic PAHs in the Environment. Environ. Sci. Technol. 26:1278-1284.
Michelcic, J. R. and R. C. Luthy. 1988. Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soils-water systems. Appl Environ Microbiol. 54:1182-11887.
Nazaroff, W. W. and L. A. Cohen. 2001. Environmental Engineering Science, John Wiley & Sons, New York, 76-106.
Neff, J. M., 1979. Polycyclic Aromatic Hydrocarbons: Evaluations of Sources and Effects. National Academy Press, Washington, DC.
Rhoades, J. K. 1982. Cation exchang capacity. In A. L. Page et al. (ed.). Method of Soil Analysis. Part 2. 2nd ed. Madison, WI. Agronomy 9: 149-158.
Schroth, M. H., M. Oostrom. T.W. Wietsma., and J. D. Istok. 2001. In-situ oxidation of trichloroethene by permanganate - effects on porous medium hydraulic properties. Journal of Contaminant Hydrology, 50: 79-98.
Su, C., B. Y. Hong., and C. M. Tseng. 2004. Sol–gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 96: 119-126.
Takeda, N., T. Torimoto. S. Sampath. S. Kuwabata., and H. Yoneyama. 1995. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. Journal of Physical Chemistry 99: 9986-9991.
Tiessen, H., J. R. Bettany., and J. W. B. Stewart. 1981. An improved method for the determination of carbon in soils and soil extracts by dry combustion. Commun. Soil Sci Plant Anal. 12: 211-218.
Tsumura, T., N. Kojitani. H. Umemura. M. Toyoda., and M. Inagaki. 2002. Composites between photoactive anatase-type TiO2 and adsorptive carbon. Applied Surface Science 196: 429-436.
Tuominen, J., S. Salomss, H. Pyysalo, E. Skytta, L. Tikkanen, T. Nurmela, M. Sorsa, V. Pohjola, M. Sauri, and K. Himberg. 1988. Polynuclear Aromatic Hydrocarbons and Genotoxicity in Particulate and Vapor Phases of Ambient Air : Effect of Traffic Season and Meteorological Condition. Environ. Sci. Technol. 22:1228-1234.
Uchida, H., S. Itoh., and H. Yoneyama. 1993. Photocatalytic decomposition of propyzamide using TiO2 supported in actived carbon. Chemistry Letters, 1995-1998.
Wakeham, S. G., C. Schaffner, and W. Giger. 1980. Polycyclic aromatic hydrocarbons in recent lake sediments-II. Compounds derived biogenic precursors during early diagenesis. Geochimica et Cosmochimica Acta 44:415–429.
Wang, M. C. and P. M. Huang. 1992. Significance of Mn(IV) oxide in the abiotic ring cleavage of pyrogallol in natural environments. Sci. Total Environ. 113: 147-157.
Wang, M. C. and P. M. Huang. 2005. Cleavage of 14C-labelled glycine and its polycondensation withpyrogallol as catalyzed by birnessite. Geoderma 124: 415-426.
Wild, S. R. and K. C. Jones. 1995. Polynuclear aromatic hydrocarbons in the United Kingdom environment: A prelininary source inventory and budget. Environ. Pollut. 88:91-108.
Zandere, M. 1985. Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons Marcel Dekker. Inc.
Zhang, X. R. and P. Yang. 2002. Study on preparation of TiO2-SiO2/beads and it’s photocatalytic properties by sol-gel technique. Acta Energiae Solaris Sinica 23(2): 150-153.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top