(3.230.173.249) 您好!臺灣時間:2021/04/21 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:涂健智
研究生(外文):Chien-Chih Tu
論文名稱:一個基於RDF與OWL用於推演智慧家居危險層級之時間情境推理模型的研究
論文名稱(外文):The Study of a Temporal Context Reasoning Model for Inferring Dangerous Level of a Smart Home Based on RDF and OWL
指導教授:廖珗洲廖珗洲引用關係
指導教授(外文):Hsien-Chou Liao
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:45
中文關鍵詞:資源描述架構Web本體語言智慧家居情境感知一階述語邏輯時間情境
外文關鍵詞:context-awarenesssmart hometemporal contextfirst-order predicate logicresource description frameworkweb ontology language
相關次數:
  • 被引用被引用:1
  • 點閱點閱:531
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
在無所不在計算的環境中,情境推理對於情境感知是一個非常重要的議題,藉此才能得知更多或者所需的資訊並且自動提供適當的服務。在過去的研究當中都是針對某一時刻下的情境資訊來進行推理,例如:依據會議室中的人數以及執行的軟體,就可以推理出會議室正在進行的活動為何。然而有很多資訊是需要藉由不同時間下的情境才有辦法推理得知。有鑑於此,本篇論文中針對智慧家居的環境定義一個以RDF與OWL為基礎的時間情境推理模型(TempCRM),由於在日常家居生活中有許多潛在危安狀況是因為一連串不同時間下的情境所導致出來,其危險層級也大都是隨著時間增加而提升。在TempCRM模型中,我們使用RDF與OWL用來描述家庭中各種事件的情境資訊,並且定義一組一階述語邏輯規則在這些資訊上進行時間相關的時間情境推理,最後計算出家居的危險層級。透過一個假想狀況劇本的驗證,說明我們所定義的TempCRM模型可以有效地計算出家居危險層級,提供更好的時間推理機制與提升家居安全的有效方法。
In the ubiquitous computing environment, context reasoning is an important issue of context-awareness. It is used to deduce desired or higher-level context and then to provide suitable services automatically. The previous context-reasoning approaches are mainly non-temporal. The reasoning is according to the real-time contexts without time information. However, temporal contexts are very important information for context-awareness. Therefore, a temporal context reasoning model based on resource description framework (RDF) and Web ontology language (OWL) is proposed in this paper. TempCRM is also applied to a smart home for inferring its dangerous level. In a home environment, a potential dangerous situation is caused by a series of temporal events. A temporal event is represented as a RDF-based temporal context. A smart home ontology is defined for the terms and relationships used in the temporal context. Then, a set of reasoning rules can be defined for inferring and computing the dangerous level. In the simulation study, a script with dangerous situations is designed to evaluate the dangerous level generated by TempCRM. The result illustrates that TempCRM is effective to alarm the inhabitant and thus prevent the occurrence of an incident from the temporal contexts.
目錄
中文摘要 I
Abstract II
誌謝 III
圖目錄 VI
表目錄 VIII
1. 簡介 1
1.1. 概論 1
1.2. 研究背景及動機 2
1.3. 論文架構 5
2. 相關研究 6
2.1. 情境感知相關研究 6
3. TempCRM時間情境推理模型 15
3.1. 情境述語 16
3.2. 智慧家居本體論 20
3.3. RDF時間情境資訊 22
3.4. 裝置狀態的機率密度函數 26
3.5. 時間推理規則 28
4. 模擬分析與結果 34
5. 結論與未來工作 40

圖目錄
圖1:EasyMeeting 架構圖 7
圖2:Cobra架構圖 8
圖3:policy ontology定義描述rules的字彙用來規範不同的agent對於個人資訊的存取權限 9
圖4:Semantic Space中所定義的上層及延伸領域的context ontology 10
圖5:Semantic Space情境架構圖 11
圖6:基於使用者目前的活動、位置、以及計算實體 12
圖7:ADBM的架構概要圖 13
圖8:ECA時間推理規則 14
圖9:TempCRM模型的架構圖 15
圖10:智慧家居上層ontology與智慧家居領域ontology的定義 22
圖11:一個使用RDF來描述資源的範例 23
圖12:一個使用RDF來描述情境資訊的範例 24
圖13:TempCRM模型中描述某一事件的RDF範例 25
圖14:裝置Di之使用時間的機率常態分佈圖 27
圖15:裝置Di之使用時間TE轉換為危險層級的分佈圖 28
圖16:瓦斯未關狀況下的推理規則 29
圖17:以RDF來呈現推理規則的流程 31
圖18:大門未關危安狀況下的推理規則 31
圖19:危險層級推理的模擬結果 36
圖20:改善遮蔽效應後的模擬結果 38


表目錄
表1:一個家居事件假想的模擬劇本 34
表2:模擬使用的參數設定值 35
參考文獻
[1]H. Chen, T. Finin, A. Joshi, and L. Kagal, “Intelligent Agents Meet the Semantic Web in Smart Spaces,” IEEE Internet Computing, Vol. 8, Issue 6, Nov-Dec 2004, pp. 69-70.
[2]X. H. Wang, J. S. Dong, C. Y. Chin, and S. R. Hettiarachchi, “Semantic Space: An Infrastructure for Smart Spaces,” IEEE Pervasive Computing, Vol. 3, Issue 2, July-Sept. 2004, pp. 32-39.
[3]J. F. Man, Q. Chen, X. H. Deng, and Y. A. Qiu, “The Design and Implementation of Shared Ontologies for Smart Space Application,” International Conference on Machine Learning and Cybernetics, Vol. 1, Aug. 2005, pp. 125-131.
[4]H. Chen and T. Finin, “An Ontology for Context Aware Pervasive Computing Environments,” Knowledge Engineering Review, Cambridge University Press, Vol. 18, No. 3, May 2004, pp. 197-207.
[5]A. Ranganathan and R. Campbell, “An Infrastructure for Context-Awareness Based on First Order Logic,” Personal and Ubiquitous Computing, Vol. 7, Issue 6, Nov. 2003, pp. 353-364.
[6]X. H. Wang, T. Gu, D. Q. Zhang, and K. P. Hung, “Ontology based context modeling and reasoning using OWL,” The Second IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom2004), March 2004, pp. 18-22.
[7]V. B. Nogueira, S. Abreu, and G. David, "Towards Temporal Reasoning in Constraint Contextual Logic Programming", The Third Internationl Workshop on Multiparadigm Constraint Programming Languages (MultiCPL’04), Saint-Malo, France, Sep. 6-10, 2004, pp.119-131.
[8]H. Zhu, S. E. Madnick, and M. D. Siegel, "Reasoning About Temporal Context Using Ontology and Abductive Constraint Logic Programming," Lecture Notes in Computer Science, Vol. 3208, 2004, pp. 90-101.
[9]D. Moldovan, C. Clark, and S. Harabagiu, "Temproal Context Representation and Reasoning," The Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, July 2005, pp. 1099-1104.
[10]Semantic web site, http://www.w3.org/2001/sw/
[11]Resource Description Framework (RDF) Model and Syntax Specification, World Wide Web Consortium, 22 Feb. 1999, www.w3.org/TR/1999/ REC-rdf-syntax-19990222.
[12]Resource Description Framework (RDF): Concepts and Abstract Syntax, World Wide Web Consortium, 10 Feb. 2004, http://www.w3.org/TR/2004/REC- rdf-concepts-20040210.
[13]OWL Web Ontology Language Guide, World Wide Web Consortium, 10 Feb. 2004, http://www.w3.org/TR/2004/REC-owl-guide-20040210.
[14]OWL Web Ontology Language Reference, World Wide Web Consortium, 10 Feb. 2004, http://www.w3.org/TR/2004/REC-owl-ref-20040210.
[15]J. C. Augusto and C. Nugent, “The Use of Temporal Reasoning and Management of Complex Events in Smart Homes”, European Conference on Artificial Intelligence, August 2004, pp. 778-782.
[16]A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell, “Reasoning about Uncertain Contexts in Pervasive Computing Environments,” IEEE Pervasive Computing, Vol. 4, Issue 2, 2004, pp.62-70.
[17]A. Ranganathan and R. H. Campbell, “A Middleware for Context-Aware Agents in Ubiquitous Computing Environments,” USENIX International Middleware Conference, 2002.
[18]M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt, “Gaia: A Middleware Infrastructure to Enable Active Spaces,” IEEE Pervasive Computing, Vol. 1, Issue 4, Oct.-Dec. 2002, pp. 74-83.
[19]M. Roman and R. H. Campbell, “GAIA: Enabling Active Spaces,” Proceedings of the 9th workshop on ACM SIGOPS European workshop, 2000, pp. 229-234.
[20]M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson, D. Fox, H. Kautz, and D. Hahnel, “Inferring Activities from Interactions with Objects,” IEEE Pervasive Computing, Vol. 4, Issue 4, 2004, pp. 50-57.
[21]P. Peursum, S. Venkatesh, G. A. W. West, and H. H. Bui, “Using Interaction Signatures to Find and Label Chairs and Floors,” IEEE Pervasive Computing, Vol. 3, Issue 4, 2004, pp. 58-65.
[22]J. Forstadius, O. Lassila, and T. Seppanen, “RDF-based Model for Context-Aware Reasoning in Rich Service Environment,” The Third IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom2005), March 2005, pp. 15-19.
[23]G. Virone, N. Noury, J. Demongeot, “A system for automatic measurement of circadian activity deviations in telemedicine”, IEEE Transactions on Biomedical Engineering, Vol. 49, Issue 12, Dec. 2002, pp. 1463-1469.
[24]J. Carroll et al., Jena: Implementing the Semantic Web Recommendations, tech. report HPL-2003-146, Hewlett Packard Labs, 2003. http://jena.sourceforge.net/
[25]E. Friedman-Hill, Jess: The Rule Engine for the Java Platform, 1995. http://herzberg.ca.sandia.gov /jess/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔