跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 09:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:溫志誠
研究生(外文):Chih-Cheng Wen
論文名稱:在802.15.3無線個人區域網路中有效率之排程演算法之研究
論文名稱(外文):An Efficient Scheduling Algorithm in 802.15.3 WPANs
指導教授:王能中王能中引用關係黃永發黃永發引用關係
指導教授(外文):Neng-Chung WangYung-Fa Huang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:32
中文關鍵詞:超訊框空間切割多工存取能源管理IEEE 802.15.3微網
外文關鍵詞:piconetpower managementspace division multiple accesssuperframe.IEEE 802.15.3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
無線個人區域網路(Wireless Personal Area Networks, WPANs)是由可攜式裝置所構成,這些裝置可以在短距離的範圍內傳輸資料。在無線個人區域網路中的IEEE 802.15.3,它被設計於提供低成本、低能源消耗及高傳輸率。IEEE 802.15.3是建立在微網(Piconet)上,此微網是一種無線隨意網路通訊的系統,它允許一些裝置,彼此以點對點的方式做通訊。微網還提供了一些功能,例如系統分時、服務品質及能源管理。
在IEEE 802.15.3的標準中,有四種針對能源節省的能源管理(Power Management, PM)模式。這些能源管理模式可以讓裝置,在一個或多個超訊框(Superframe)的時間內進行睡眠,以達到節省能源,裝置可以在不是分配給自己的通道配置時間中進入睡眠,裝置可以在分配給自己的通道配置時間中醒來,裝置在醒來模式和睡眠模式中做切換,這樣子的切換動作會浪費大量的能源。因此,能源管理問題便是如何將裝置間的總喚醒次數降低。
在本論文中,我們藉由最小分支搜尋演算法,來排序裝置間多串流的情況,藉此達到最小的總喚醒次數。然後我們藉由空間切割多工存取技術(Space Division Multiple Access, SDMA),來檢驗每一裝置在同一個時間內,做資料傳輸的動作。假如大部分的裝置在同一時間內,可以完成資料傳輸,則總喚醒次數將會被大大的降低。模擬結果顯示了我們提出來架構的總喚醒次數小於標準(Standard)及最小分支搜尋演算法(Min-Degree Searching, MDS)的總喚醒次數。
Wireless personal area networks (WPANs) consist of portable devices. These devices can convey information over short distances. One of the WPANs is IEEE 802.15.3 which is designed to provide low cost, low power consumption, and high data rate. The IEEE 802.15.3 is based on piconet. The piconet is a wireless ad hoc data communications system which allows a number of devices to communicate with each other in a peer-to-peer mode. It provides a lot of functionalities such as system timing, quality of service (QoS) and power management (PM).
In the IEEE 802.15.3 standard, there are four PM modes for power saving. These modes enable devices to sleep for one or more superframes to save power. Devices can go to sleep during the channel time allocations (CTAs) which are not assigned for its streams. Devices can wake up during the CTAs for its streams. Devices switch over between wakes up mode and sleeps mode. It will waste a large power. Therefore, the PM problem is how devices reduce the total wakeup times.
In this thesis, we order the streams among multiple devices to minimize the total wakeup times via min-degree searching (MDS) algorithm. Then, we check every device that can transmit data at the same time by space division multiple access (SDMA) technology. The total wakeup times will reduce substantially if the most of the devices can transmit data at the same time. Simulation results show that the total wakeup times of our proposed scheme are lower than that of standard and MDS algorithms.
摘要 I
Abstract II
誌謝 III
Contents IV
List of figures V
List of figures VI
Chapter 1 Introduction 1
1.1 Piconet 1
1.2 Superframe 2
1.3 Power Mode 3
1.4 Space Division Multiple Access (SDMA) 4
1.5 Motivation and Concept 4
1.6 Thesis Organization 5
Chapter 2 Related Work 6
2.1 Overview of Power Management 6
2.2 Issues of WPANs 9
Chapter 3 Enhanced Min-Degree Searching (EMDS) Algorithm 13
3.1 Space Division Multiple Access System 13
3.2 Proposed Enhanced Min-Degree Searching (EMDS) Algorithm 14
3.3 Detail of the Proposed Algorithm 17
Chapter 4 Performance Evaluation 18
4.1 Simulation Description 18
4.2 Simulation Results 19
Chapter 5 Conclusions and Future Work 26
5.1 Conclusions 26
5.2 Future Work 26
References 28
[1] FCC First Report and Order, “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems,” pp. 98-153, 2002.
[2] LAN MAN Standards Committee of the IEEE Computer Society, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs),” The Institute of Electrical and Electronics Engineers, June 2002.
[3] LAN MAN Standards Committee of the IEEE Computer Society, “Coexistence of Wireless Personal Area Networks with Other Wireless Devices Operating in Unlicensed Frequency Bands,” The Institute of Electrical and Electronics Engineers, August 2003.
[4] LAN MAN Standards Committee of the IEEE Computer Society, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs),” The Institute of Electrical and Electronics Engineers, September 2003.
[5] LAN MAN Standards Committee of the IEEE Computer Society, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” The Institute of Electrical and Electronics Engineers, October 2003.
[6] LAN MAN Standards Committee of the IEEE Computer Society, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” November 1997.
[7] J. Moy, “OSPF Version 2,” RFC 2328, April 1998.
[8] S. Bellofiore, J. Foutz, R. Govindarajula, I. Bahceci, C. A. Balanis, A. S. Spanias, J. M. Capone, and T. M. Duman, “Smart Antenna System Analysis, Integration and Performance for Mobile Ad-Hoc Networks (MANETs),” IEEE Transactions on Antennas and Propagation magazine, Vol. 50, pp. 571-581, May 2002.
[9] A. U. Bhobe and P. L. Perin, “An Overview of Smart Antenna Technology for Wireless Communication,” IEEE Proceedings of the 2001 Aerospace Conference, Vol. 2, pp. 875-883, March 2001.
[10] J. M. Boyce and R. D. Gaglianello, “Packet Loss Effects on MPEG Video Sent over the Public Internet,” Proceedings of the 6th ACM International Conference on Multimedia, pp. 181-190, 1998.
[11] A. Capone, M. Gerla, and R. Kapoor, “Efficient Polling Schemes for Bluetooth picocells,” IEEE International Conference on Communications, Vol. 7, pp. 1990-1994, June 2001.
[12] H. Chen, Z. Guo, R. Yao, and Y. Li, “Adaptive Dly-ACK for TCP over 802.15.3 WPAN,” Proceedings of the Global Telecommunications Conference, Vol. 3, pp. 1686-1690, November 2004.
[13] A. Das, A. Ghose, A. Razdan, H. Saran and R. Shorey, “Enhancing Performance of Asynchronous Data Traffic over the Bluetooth Wireless Ad-Hoc Network,” Proceedings of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 1, pp. 591-600, April 2001.
[14] R. H. Deng and B. Feng, “An Improved Personal CA for Personal Area Networks,” IEEE Global Telecommunications Conference, Vol. 3, pp. 1486-1490, December 2003.
[15] C. Gehrmann, K. Nyberg, and C. J. Mitchell, “The Personal CA-PKI for a Personal Area Network,” Proceedings of IST Mobile and Wireless Communications Summit, pp. 31-35, June 2002.
[16] C. Gehrmann, T. Kuhn, K. Nyberg, and P. Windirsch, “Trust Model, Communication and Configuration Security for Personal Area Neworks,” Proceedings of IST Mobile and Wireless Communications Summit, June 2002.
[17] X. George, C. P. George, M. Petri, and S. Mika, “TCP Performance Issues over Wireless Links,” IEEE Communication Magazine, Vol. 39, pp. 52-58, April 2001.
[18] Z. Guo, R. Yao, W. Zhu, X. Wang, and Y. Ren, “Intra-Superframe Power Management for IEEE 802.15.3 WPAN,” IEEE Communications Letters, Vol. 9, Issue 3, pp. 228-230, March 2005.
[19] H. J. Jeong, M. Cho, S. H. Kim, D. S. Kim, and J. T. Lee, “PNC Candidate Inquiry Method for PNC Handover on WPAN,” 15th IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, Vol. 3, pp. 1752-1756, September 2004.
[20] N. Johansson, U. Korner, and P. Johansson, “Performance Evaluation of Scheduling Algorithms for Bluetooth,” Kluwer International Federation for Information Processing Series, Vol. 159, 99. 139-150, 2000.
[21] M. Kalia, D. Bansal, and R. Shorey, “MAC Scheduling and SAR Policies for Bluetooth: a Master Driven TDD Pico-Cellular Wireless System,” IEEE International Workshop on Mobile Multimedia communications, pp. 384-388, November 1999.
[22] M. Kalia, D. Bansal, and R. Shorey, “Data Scheduling and SAR for Bluetooth MAC,” Proceedings of the 51th IEEE Vehicular Technology Conference, Vol. 2, pp. 716-720, May 2000.
[23] S. Kim and Y. J. Cho, “Scheduling Scheme for Providing QoS to Real-Time Multimedia Traffics in High-Rate Wireless PANs,” IEEE Transactions on Consumer Electronics, Vol. 51, Issue 4, pp. 1159-1168, November 2005.
[24] M. Krunz, “Bandwidth Allocation Strategies for Transporting Variable Bit Rate Video Traffic,” IEEE Communications Magazine, Vol. 37, pp. 40-46, January 1999.
[25] D. Li, P. Chou, and N. Bagherzadeh, “Mode Selection and Mode-Dependency Modeling for Power-Aware Embedded Systems,” Proceedings of the 7th Asia and South Pacific and the 15th International Conference on VLSI Design, pp. 697-704, January 2002.
[26] X. Liu, Q. Dai, and Q. Wu, “Scheduling Algorithms Analysis for MPEG-4 Traffic in UWB,” Proceedings of the IEEE 60th Vehicular Technology Conference, Vol. 7, pp. 5310-5314, September 2004.
[27] J. Lu, R. Schlub, and T. Ohira, “A Performance Comparison of Smart Antenna Technology for Wireless Mobile Communication Terminals,” Proceedings of the Asia-Pacific Microwave Conference, Vol. 2, pp. 581-584, December 2001.
[28] R. Mangharam, M. Demirhan, R. Rajkumar, and D. Raychaudhuri, “Size Matters: Size-based Scheduling for MPEG-4 over Wireless Channels,” Proceedings of SPIE Conference on Multimedia Computing and Networking Conference, Vol. 5305, pp. 110-122, January 2004.
[29] A. Markopoulos, G. Vrvanitis, P. Psilakis, S. Kyriazakos, and G. Stassinopoulos, “Security Mechanisms Maintaining User Profile in a Personal Area Network,” IEEE Proceedings of the 14th IEEE Personal, Indoor and Mobile Radio Communications, Vol. 3, pp. 2770-2774, September 2003.
[30] G. T. Okamoto, “Smart Antenna Systems and Wireless LANs,” Kluwer Academic Publishers, 1998.
[31] J. Padhye, V. Firoiu, F. Towsley, and J. F. Kurose, “Modeling TCP Reno Performance: A Simple Model and Its Empirical Validation,” IEEE/ACM Transactions on Networking, Vol. 8, pp. 133-145, April 2000.
[32] K. E. Persson and D. Manivannan, “Secure Connections in Bluetooth Scatternets,” Proceedings of the 36th Annual Hawaii International Conference on System Sciences, pp. 1-10, January 2003.
[33] R. Radhakrishnan, D. Lai, J. J. Caffery, and D. P. Agrawal, “Performance Comparison of Smart Antenna Techniques for Spatial Multiplexing in Wireless Ad Hoc Networks,” The 5th International Symposium on Wireless Personal Multimedia Communications, Vol. 1, pp. 168-171, October 2002.
[34] B. Radunovic and J. Y. Le Boudec, “Optimal power control, scheduling, and routing in UWB networks,” IEEE Jonal on Selected Areas in Communication, Vol. 22, pp. 1252-1270, September 2004.
[35] S. H. Rhee, K. Chung, Y. Kim, W. Yoon, and K. S. Chang, “An Application-Aware MAC Scheme for IEEE 802.15.3 High-Rate WPAN,” Proceedings of the IEEE Wireless Communications and Networking Conference, Vol. 2, pp. 1018-1023, March 2004.
[36] R. H. Roy, “An Overview of Smart Antenna Technology and Its Application to Wireless Communication System,” IEEE International Conference on Personal Wireless Communication, pp. 234-238, December 1997.
[37] R. H. Roy, “An Overview of Smart Antenna Technology: The Next Wave in Wireless Communications,” Proceedings of the 1998 Aerospace Conference, Vol. 3, pp. 339-345, March 1998.
[38] J. E. Song, B. H. Chung, and K. I. Chung, “A Distributed Certificate Key Management in IEEE 802.15.3 WPAN environment,” Proceedinds of the 7th International Conference on Advanced Communication Technology, Vol. 2, pp. 1019-1022, February 2005.
[39] M. Takata, K. Nagashima, and T. Watanabe, “A Dual Access Mode MAC Protocol for Ad Hoc Networks Using Smart Antennas,” Proceedings of the IEEE International Conference on Communications, Vol. 7, pp. 4182-4186, June 2004.
[40] Y. H. Tseng, E. H. K. Wu, and G. H. Chen, “Maximum Traffic Scheduling and Capacity Analysis for IEEE 802.15.3 High Data Rate MAC Protocol,” Proceedings of the IEEE 58th Vehicular Technology Conference, Vol. 3, pp. 1678-1682, October 2003.
[41] Z. Yin and V. C. M. Leung, “Third-party Handshake Protocol for Efficient Peer Discovery in IEEE 802.15.3 WPANs,” Proceedings of the 2nd International Conference on Broadband Networks, Vol. 2, pp. 840-849, October 2005.
[42] X. Zhai, G. Bi, and P. Xu, “Call Admission Control with Bandwidth Reallocation for Adaptive Multimedia in High-Rate WPAN,” Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies, pp. 557-560, May 2004.
[43] A. Ziviani, B. E. Wolfinger, J. F. Rezende, O. C. Duarte, and S. Fdida, “Joint Adoption of QoS Schemes for MPEG Streams,” Multimedia Tools and Applications, Vol. 26, pp. 59-80, May 2005.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top