跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳懿娟
研究生(外文):Yi-Chuan Wu
論文名稱:毛細管電泳/雷射激發螢光偵測法分析環境水樣中保米黴素及嘉賜黴素之含量
論文名稱(外文):Sensitive Determination of Blasticidin S and Kasugamycin in Environmental Waters by Capillary Electrophoresis with Laser-induced Fluorescence Detection.
指導教授:張玉珍張玉珍引用關係陳政男陳政男引用關係
指導教授(外文):Yu-Chen ChangChang-Nan Chen
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:100
中文關鍵詞:雷射激發螢光偵測法毛細管電泳
外文關鍵詞:Capillary ElectrophoresisLIF Detection
相關次數:
  • 被引用被引用:3
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:1
化學農藥中常使用殺菌劑作為植物保護之用藥。殺菌劑具有較高的選擇性,在低濃度時即可抑制微生物的生長,其優點為效力強、藥效長、藥量使用少,對動物、作物及環境毒害較低。其中,Blasticidin S及Kasugamycin此兩種抗生素類之殺菌劑,主要在防治稻熱病(rice blast),具有良好的選擇性,但若使用不當,則農作物或環境生態上造成農藥殘留。因此,為了能有效的管制監控,開發一套靈敏、簡單的分析技術是必要的。
本研究發展毛細管電泳/氬離子雷射激發螢光偵測法應用於Blas- ticidin S及Kasugamycin的分析。利用6-Carboxyfluorescein , succi- nimidyl ester(CFSE)與非螢光性質的分析物進行管柱前衍生,以未塗佈之熔融矽毛細管,成功分離CFSE-biopesticides衍生物。Blasticidin S和Kasugamycin的校正曲線於5~1000 nM範圍間呈一線性關係,相關係數(r)皆於0.999以上,偵測極限為1.62與2.46 nM,遷移時間的相對標準偏差(RSD)為1.69~ 1.75﹪,訊號面積的RSD值為3.9~7.1﹪(n=7)。此分析方法成功地應用於地下水及灌溉水中Blasticidin S及Kasugamycin之偵測,回收率可達93.0~103.9﹪,並依環保署公告之「環境檢驗品質管制圖建立指引」建立品質管制圖。
Fungicides are an important group of pesticides, they have specific developmental activity. The advantage of fungicides is that they only work on the target pests and closely related organism, they also lessen risk to human health and environment.
Blasticidin S and Kasugamycin both are fungicidal antibiotic, they are effective against rice blast. If the fungicides are not correctly used, it will cause pollution in environmental waters. Therefore, it is necessary to develop a rapid and sensitive method to determine the concertration of fungicides in water samples.
In this study, capillary electrophoresis with laser-induced fluorescence detection method was developed for the determination of biopesticides in enviromental waters. 6-Carboxyfluorescein succinimidyl ester(CFSE) was used for precolumn derivatization of the non-fluorescent pesticides. The linear range of biopesticides were less than 3 orders(5~1000 nM, r≧0.999), and the limits of detection were 1.62~2.46 nM. The relative standard deviation of migration time and peak areas were 1.69~ 1.7% and 3.9~7.1% respectively. This method was successfully applied to the determination of fungicide in enviromental waters. The recoveries of enviromental waters were 93.0~103.9% in ground waters and irrigation waters.
中文摘要……………………………………………………………І
英文摘要……………………………………………………………ІІ
謝誌…………………………………………………………………ІІІ
目錄…………………………………………………………………V
圖目錄………………………………………………………………VIII
表目錄………………………………………………………………X

壹、緒論………………………………………………………..…1
一、毛細管電泳簡介………………………………………………1
1.1毛細管電泳的發展………………………………………..1
1.2毛細管電泳分離原理……………………………………..5
1.3毛細管電泳進樣方式……………………………………..12
1.4毛細管電泳偵測方式……………………………………..14
二、保米黴素(Blasticidin S)與嘉賜黴素(Kasugamycin)殺菌劑.....17
2.1簡介…………………………………………………….......17
2.2保米黴素(Blasticidin S)………………………………...….20
2.3嘉賜黴素(Kasugamycin)…………………………………...20
2.4分析方法…………………………………………………….21
2.5研究動機…………………………………………………….23
貳、儀器設備及實驗方法….……………………………....…....26
一、藥品………………………………………………………………26
二、儀器設備…………………………………………………………28
三、實驗方法…………………………………………………………31
3.1毛細管使用方式……………………………………………..31
3.2緩衝溶液的配製……………………………………………..31
3.3藥品的配製…………………………………………………..32
3.4環境水樣的配製……………………………………………..32
3.5衍生反應……………………………………………………..33
3.6進樣方式……………………………………………………..33
3.7毛細管電泳裝置……………………………………………..33
3.8雷射激發螢光裝置…………………………………………..34
參、結果與討論……………………………………………………36
一、毛細管電泳/雷射激發螢光偵測系統測試……………………..36
二、衍生條件之探討…………………………………………………38
1.衍生反應……………………………………………………….38
2.衍生緩衝溶液pH之探討……………………………………..44
3.衍生溫度之探討……………………………………………….44
4.衍生試劑與分析物比例之探討……………………………….47
5.衍生時間之探討……………………………………………….47
三、分離條件之探討…………………………………………………50
1.電泳緩衝溶液pH值的影響…………………………………...52
2.分離電壓的探討………………………………………………..53
3.電泳緩衝溶液濃度之探討……………………………………..53
四、最佳分離條件…………………………………………………….62
五、標準品檢量線…………………………………………………….62
六、再現性…………………………………………………………….63
七、真實樣品之檢測………………………………………………….68
7.1真實樣品測定方式…………………………………………....71
7.2回收率試驗……………………………………………………71
7.3認證試驗………………………………………………………72
八、品質管制圖之建立………………………………………………..78
8.1重複樣品分析品質管制圖……………………………………78
8.2查核樣品分析品質管制圖……………………………….……83
肆、結論………………………………………………………………..89
參考文獻……………………………..………………………………..90
圖目錄

圖(一)毛細管基本裝置圖………………………………………….6
圖(二)電雙層與Zeta potential關係示意圖……………………….8
圖(三)電滲流……………………………………………………….9
圖(四)雷射激發螢光偵測器內部元件構造……………………….35
圖(五)螢光素鈉之電泳圖………………………………………….37
圖(六)衍生試劑之反應途徑……………………………………….41
圖(七)背景訊號圖之比較………………………………………….42
圖(八)CFSE與水的衍生反應圖…………………………………...43
圖(九)衍生緩衝溶液pH值對訊號面積之關係圖………………...45
圖(十)衍生溫度對訊號面積之關係圖……………………………..46
圖(十一)衍生劑與分析物比例對訊號面積之關係圖……………..48
圖(十二)衍生時間對訊號關係圖…………………………………..49
圖(十三)緩衝溶液pH值與Fungicides之電泳圖………..…….…51
圖(十四)緩衝溶液pH值對訊號面積之關係圖…………………...52
圖(十五)電壓與Fungicides之電泳圖………………………………55
圖(十六)電壓對訊號高度之關係圖………………………………..56
圖(十七)電壓對訊號遷移時間之關係圖…………………………..57
圖(十八)緩衝溶液濃度對訊號高度之關係圖……………………..58
圖(十九)緩衝溶液濃度對Fungicides之電泳圖……….………….59
圖(二十)緩衝溶液濃度與解析度之關係圖………………………..60
圖(二十一)緩衝溶液濃度對理論板數之關係圖…………………..61
圖(二十二)最佳分離條件之電泳圖………………………………..63
圖(二十三)CFSE-Fungicides衍生產物電泳圖…………………….66
圖(二十四)地下水分析……………………………………………...69
圖(二十五)灌溉水分析……………………………………………...70
圖(二十六)重複分析Blasticidin S 之品質管制圖………………...81
圖(二十七)重複分析Kasugamycin 之品質管制圖……………......82
圖(二十八)查核樣品(地下水)分析-Blasticidin S之品質管制圖.85
圖(二十九)查核樣品(地下水)分析-Kasugamycin之品質管制圖.86
圖(三十)查核樣品(灌溉水)分析-Blasticidin S之品質管制圖…..87
圖(三十一)查核樣品(灌溉水)分析-Kasugamycin之品質管制圖.88

表目錄

表(一)Blasticidin S與Kasugamycin之基本特性……………….18
表(二)Blasticidin S與Kasugamycin塩酸塩類形態之生物毒性
與市售劑型………………………………………………...19
表(三)各國殘留容許量之規定…………………………………...25
表(四)衍生劑之結構……………………………………………...40
表(五)CFSE-Fungicides之衍生產物檢量線……………………..64
表(六)CFSE-Fungicides之再現性………………………………..67
表(七)地下水檢量線………………………………………………74
表(八)灌溉水檢量線……………………………………………....75
表(九)地下水及灌溉水回收率……………………………………76
表(十)同日間intra-day與異日間inter-day之Precision…………77
參考文獻

1.S. F. Y. Li, Capillary Electrophoresis, Journal of Chromatography Library, Vol.52, Elsevier, New York, pp. 2 (1992).
2.A. Tiselius, “A new apparatus for electrophoretic analysis of colloidal mixtures,” Transactions of the Faraday Society, Vol. 33, pp. 524-531(1937)
3.S. Hjertén, “Free zone electrophorsis,” Chromatographic Review, Vol. 9, pp. 122-239 (1967).
4.R. Kuhn, S. Hoffstetter-Kuhn, Capillary Electrophoresis: Principle and Practice, Springer-Verlag, New York, pp. 2, (1993).
5.A. G. Ewing, R. A. Wallingford, and T. M. Olefirowicz, “Capillary Electrophoresis,” Analytical Chemistry, Vol. 61, pp. 292A-303A (1989).
6.F. E. P. Mikkers, F. M. Everaerts, and Th. P. E. M. Verheggen, “High-performance zone electrophoresis,” Journal of Chromatography, Vol. 169, pp. 11-20 (1979).
7.J. W. Jorgenson and K. D. Lukacs, “High-resolution separations based on electrophoresis and electroosmosis,” Journal of Chromatography, Vol. 218, pp. 209-216 (1981).
8.J. W. Jorgenson and K. D. Lukacs, “Zone electrophoresis in open-tubular glass capillaries,” Analytical Chemistry, Vol. 53, pp. 1298-1302 (1981).
9.J. W. Jorgenson and K. D. Lukacs, “Capillary zone electrophoresis,” Science, Vol. 222, pp. 266-272 (1983).
10.S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and T. Ando, “Electrokinetic separations with micellar solutions and open-tubular capillaries,” Analytical Chemistry, Vol. 56, pp. 111-113 (1984).
11.魏國佐,林文政,「中性分子在微胞電動層析的樣品堆積」,化學,第59卷,第363-372頁(2001)。
12.D. R. Baker, Capillary electrophoresis, Wiley-Interscience, New York, pp. (1995).
13.S. Hjertén and M. D. Zhu, “Adaptation of the equipment for high- performance electrophoresis to isoelectric focusing,” Journal of Chromatography, Vol. 346, pp. 265-270 (1985).
14.D. N. Heiger, High performance Capillary Electrophoresis- An Introduction, Hewlett-Packard Company, France (1992).
15.A. S. Cohen and B.L. Karger, “High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins,” Journal of Chromatography,” Vol. 397, pp. 409-417 (1987).
16.T. Tsuda, “Electrochromatography using high applied voltage,” Analytical Chemistry, Vol. 59, pp. 521-523 (1987).
17.C.Yan, R. Dadoo, R. N. Zare, D. J. Rakestraw and D. S. Anex, ”gradient elution in capillary Electrochromatography,” Analytical Chemistry, Vol. 68, pp. 2726-2730 (1996).
18.S. M. Rutherfurd, F. Zhang, D. R. K. Harding and W. H. Hendriks, “Use of capillary (zone) electrophoresis for determining felinine and it’s application to investigate the stability of felinine,” Amino Acids, Vol. 27, pp. 49-55 (2004).
19.J. T. Smith, “Recent advancements in amino acid analysis using capillary electrophoresis,” Electrophoresis, Vol. 20, pp. 3078-3083 (1999).
20.M. R. N. Monton, S. Terabe, “Sample enrichment techniques in capillary electrophoresis: Focus on peptides and proteins,” Journal of Chromatography B, Vol. 841, pp. 88-95 (2006).
21.A. Zinellu, C. Carru, G. M. Pes., “N-Methyl-D-glucamine improves the laser-induced fluorescence capillary electrophoresis performance in the total plasma thiols measurement,” Electrophoresis, Vol. 24, pp. 2796-2804 (2003).
22.R. Lehmann, W. Voelter, H. M. Liebich, “Capillary electrophoresis in clinical chemistry,” Journal of Chromatography B, Vol. 697, pp. 3-35 (1997).
23.U. B. Soetebeer, M.O. Schierenberg, J.G. Moller., “Capillary electrophoresis with laser-induced fluorescence in clinical drug development: routine application and future aspects,” Journal of Chramatography A, Vol. 895, pp. 147-155 (2000).
24.X. Páez, P. Rada., ”Neutral amino acids monitoring in phenylketonuric plasma microdialysates using micellar electrokinetic chromatography and laser-induced fluorescence detection,” Journal of Chromatography B, Vol. 739, pp. 247-254 (2000).
25.M. Hernández, F. Borrull, M. Calull, “Analysis of antibiotics in biological samples by capillary electrophoresis,” Trends in Analytical Chemistry, Vol. 22, pp. 416-427 (2003).
26.Sarah Y. C., Feng-Yu W., “Determination of gabapentin in human plasma by capillary electrophoresis with laser-induced fluorescence detection and acetonitrile stacking technique,” Journal of Chromatography B,” Vol. 799, pp. 265-270 (2004).
27.R. Sekar, S. Azhaguvel, “Indirect photo metric assay determination of gabapentin in bulk drug and capsules by capillary electrophoresis,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 36, pp. 663-667 (2004).
28.P. Kowalski, I. Oledzka, H. Lamparczy, “Capillary electrophoresis in analysis of veterinary drugs,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 32, pp. 937-947 (2003).
29.Sarah Y. C., Wei Miao-Yi, “Simultaneous determination of glyphosate, glufosinate, and aminomethylphosphonic acid by capillary electrophoresis after 9-fluorenylmethyl chloroformate derivatization, Journal of the Chinese Chemical Society, Vol. 52, pp. 785-792 (2005).
30.Y. Picó, R. Rodríguez, J. Maňes, “Capillary electrophoresis for the determination of pesticide residues,” Trends in Analytical Chemistry, Vol. 22, pp. 133-151 (2003)
31.William J. N., “Pesticide residues in Volta Lake, Ghana,” Lakes& Reservoirs: Research and Management,” Vol. 10, pp. 243-248 (2005).
32.L. Nozal, L. Arce, A. Rios, M. Valcarcel, “Development of a screening method for analytical control of antibiotic residues by micellar electrokinetic capillary chromatography,” Analytica Chimica Acta, Vol. 523, pp. 21-28 (2004).
33.M. Meyring, B. Chankvetadze, G. Blaschke, “Simultaneous separation and enantioseparation of thalidomide and its hydroxylated metabolites using high-performance liquid chromatography in common-size columns, capillary liquid chromatography and nonaqueous capillary electrochromatography,” Journal of Chromatography A, Vol. 876, pp. 157-167 (2000).
34.X. Liu, A. Liang, Z. Shen et al., “Studying protein-drug interaction by microfluidic chip affinity capillary electrophoresis with indirect laser-induced fluorescence detection,” Electrophoresis, Vol. 27, pp. 3125-3128 (2006).
35.D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, A Harcourt Higher Learning Company, Fifth Edition.
36.S. F. Y. Li, “Capillary Electrophoresis,” Journal of Chromatography Library, Vol.52, Elsevier, New York, pp. 33 (1992).
37.X. Huang, M. J. Gordon, and R. N. Zare, “Bias in quantitative capillary zone electrophoresis caused by electrokinetic sample injection,” Analytical Chemistry, Vol. 60, pp. 375-377 (1988).
38.D. J. Rose, Jr., and J. W. Jorgenson, “Characterization and automation of sample introduction methods for capillary zone electrophoresis,“ Analytical Chemistry, Vol. 60, pp. 642-648 (1988).
39.M. Deml, F. Foret, and P. Bocek, “Electric sample splitter for capillary zone electrophoresis,” Journal of Chromatography , Vol. 320, pp. 159-165 (1985).
40.T. Tsuda, T. Mizuno, and J. Akiyama, “Aids for analytical chemists,” Analytical Chemistry, Vol. 59, pp. 799-800 (1987).
41.R. A. Wallaingford and A. G. Ewing, “Characterization of a microinjector for capillary zone electrophoresis,” Analytical Chemistry, Vol. 59, pp. 678-681 (1987).
42.J. P. Chervet, R. E. J. van Soest, and M.Ursem, “Z-shaped flow cell for UV detection in capillary electrophoresis,” Journal of Chromatography, Vol. 543, pp. 439-449 (1991).
43.S. E. Moring, R.T. Reel. and R. E. J. van Soest, “Optical improvements of a z-shaped cell high-sensitivity UV absorbance detection in capillary electrophoresis,” Analytical Chemistry, Vol. 65, pp. 3454-3459 (1993).
44.G. Hempel, D. Lehmkuhl, S. Krűmpelmann, G. Blaschke, and J. Boos, “Determination of paclitaxel in biological fluids by micellar electrokinetic chromatography,” Journal of Chromatography A, Vol. 745, pp. 173-179 (1996).
45.J. Olgemőller, G. Hempel, J. Boos, and G. Blaschke, “Determination of (E)-5-(2-bromovinyl)-2’-deoxyuridine in plasma and urine by capillary electrophoresis,” Journal of Chromatography B, Vol. 726, pp. 261-268 (1999).
46.T. Tsuda, J. V. Sweedler, and R. N. Zare, “Rectangular capillary for capillary zone electrophoresis,” Analytical Chemistry, Vol. 62, pp. 2149-2152 (1990).
47.Chen, Da Yong, Dovichi, Norman J., ‘Yoctomole detection limit by laser-induced fluorescence in capillary electrophoresis,’ Journal of Chromatography B, Vol. 657, pp. 265-269 (1994).
48.H. A. Bardelmeijer, J. C. M. Waterval, H. Lingeman, R. V. Hof, A. Blut, and W. J. M. Underberg, “Pre-, on- and post-column derivatization in capillary electrophoresis,” Electrophoresis, Vol. 18, pp. 2214-2227 (1997).
49.A. Wang, Y. Fang, “Applications of capillary electrophoresis with electrochemical detection in pharmaceutical and biomedical analyses,” Electrophoresis, Vol. 21, pp. 1281-1290 (2000).
50.R. A. Wallingford, A. G. Ewing, “Capillary zone electrophoresis with electrochemical detection,” Analytical Chemistry, Vol. 59, pp. 1762-1766 (1987).
51.A. J. Zemann, “Conductivity detection in capillary electrophoresis,” Trends in Analytical Chemistry, Vol. 20, pp. 346-354 (2001).
52.M. Nieddu, G. Boatto, Antonio Carta et al., “Simultaneous determination of ten amphetamine designer drugs in human whole blood by capillary electrophoresis with diode array detection,” Biomedical Chramatography, Vol. 19, pp. 737-742 (2005).
53.United States Environmental Protection Agency, About biopesticides, http://www.epa.gov/pesticides/biopesticides/whatarebiopesticides.htm
54.陳保良、李木川、黃德昌、葉瑩,「生物性農藥管理及未來發展」,農業生技產業季刊,第四期,第54~59頁(2005)。
55.高穗生,「生物農藥之產業現況及應用」,農業生技產業季刊,第四期,第34~39頁(2005)。
56.H. Kidd and R. James, The Agrochemicals Hand book, Royal Society of chemistry information Services, Third Edition (1991).
57.Pesticides Index, Taiwan Provincial Deparment of Agriculture and Forestry (PDAF), July (1968).
58.徐聖煦,農藥化學,台北市正中書局印行(1971)。
59.G. Matolcsy, M. Nádasy, V. Andriska, Pesticide Chemistry, Elsevier (1988).
60.Tomlin, Clive, The pesticide manual: a world compendium, Farnham, Surrey, UK: British Crop Protection Council (1997)
61.United States Environmental Protection Agency, Pesticide Fact Sheet, Kasugamycin, http://www.epa.gov/opprd001/factsheets/kasugamycin.pdf
62.L. G. Copping and J. J. Menn, “Review, Biopesticides: a review of their action, applications and efficacy,” Pest Management Science, Vol. 56, pp.651-676 (2000).
63.陳家鐘,「世界農藥研究發展趨勢」,台灣省農業藥物毒物試驗所技術專刊,第28期,第46號(1993)。
64.石山哲爾,「Kasugamycin 在農藥上的應用」,中國化學會誌第3期,第 A23-A31頁(1966)。
65.B. K. Hwang and H. S. Chung, “Acquired Tolerance to Blasticidin-S in Pyricularia oryzae,” Phytopathology, Vol. 67, pp. 421-424 (1976).
66.T. O. Fukauda, N. T. Ando, S. Ohsato et al., “A fluorescent antibiotic resistance marker for rapid production of transgenic rice plants,” Journal of Biotechnology, Vol.122, pp. 521-527 (2006).
67.M. Taga, J. Nakagawa, M. Tsuda and A. Ueyama, “Identification of three different loci controlling kasugamycin resistance in Puricularia oryzae,” Phytopathology, Vol. 69, pp. 463-466 (1979).
68.I. Yamaguchi, K. Takagi and T. Misato, “The Sites for degradation of Blasticidin S,” Agricultural & Biological Chemistry, Vol. 36, pp. 1719-1727(1972)
69.Inactivation of Blasticidin S by Bacillus cereus, The Journal of Antibiotics, No. 12, pp. 1791-1795 (1987).
70.C. C. Lo, Y. J. Lee, C. J. Chang, “High-performance capillary electrophoresis method for the determination of Blasticidin S in formulated products,” Journal of Agricultural and Food Chemistry, Vol. 43, pp. 2892-2895 (1995).
71.C. C. Lo, Y. J. Lee, C. J. Chang, “High-performance liquid chromatographic method for the determination of Blasticidin S in formulated products with photodiode array detection,” Journal of Agricultural and Food Chemistry, Vol. 44, pp. 153-158 (1996).
72.C. C. Lo, Y. J. Lee, C. J. Chang, “High-performance capillary electrophoresis method for the determination of antibiotic fungicide Kasugamycin in formulated products,” Journal of Agricultural and Food Chemistry, Vol. 44, pp. 2231-2234 (1996).
73.保米黴素(Blasticidin-S)有效成分檢驗方法,行政院農業委員會動植物防疫檢疫局防檢三字第0941484442號公告。
74.嘉賜黴素(Kasugamycin)有效成分檢驗方法,行政院農業委員會87農糧字第87144286號公告。
75.石信徳,黃振文,「保護植物的重要菌源-鏈黴素」,科學發展第391期,第22-27頁(2005)。
76.O. Haruki, O. Kousaburo, “Sensitive determination of blasticidin S in human blood and urine by high-performance liquid chromatography after conversion to cytomycin,” Journal of Foresic Toxicology, Vol. 17, pp. 163-170 (1999).
77.M. Junshi, K. Philip, “Residue analysis of polyoxins B, D and blasticidin S in crops and soils,” Pesticide Chemistry 5th, pp. 309-316 (1983).
78.牛長群,祝仕清,張惠敏,「反相離子對高效液相色譜法和高效毛細管電泳法測定春雷黴素」,中國抗生素雜誌,第26卷,第五期,第348-350頁 (2001)。
79.H. Danbara and M. Yoshikawa, “Plasmid-Determined Epistatic Susceptibility to Kasugamycin,” Antimicrobial Agents and Chemistry,” Vol. 8, pp. 243-250 (1975).
80.E. R. Dabbs, “Kasugamycin-dependent mutants of Escherichia coli,” Journal of Bacteriology, Vol. 136, pp. 994-1001 (1978).
81.M. Kimura and I. Yamaguchi, “Recent development in the use of Blasticidin S, a microbial fungicide, as a useful reagent in molecular biology,” Pesticides Biochemistry and Physiology, Vol. 56, pp. 243-248 (1996).
82.S. Goyard, S. M. Beverley, “Blasticidin resistance: a new independent marker for stable transfection of Leishmania,” Molecular and Biochemical Parasitology, Vol. 108, pp. 249-252 (2000).
83.K. Suzukake and M. Hori, “Biochemical study of minosaminomycin in relation to the Kasugamycin group antibiotics,” The Journal of Antibiotics, No. 2, pp. 132-140 (1977).
84.T. Kitagawa, T. Kawasaki, H. Munechika, “Enzyme immunoassay of Blasticidin S with high sensitivity: A new and convenient method for preparation of immunogenic (hapten-protein) conjugates,” Journal of Biochemistry, Vol. 92, pp. 585-590 (1982).
85.I. Yamaguchi and T. Misato, “Active center and mode of reaction of Blasticidin S Deaminase,” Agricultural & Biological Chemistry, Vol. 49, pp. 3355-3361 (1985).
86.M. Kuwano, K. Matsui, K. Takenaka et al., “A mouse leukemia cell mutant resistant to Blasticidin S,” International Journal of Cancer, Vol. 20, pp. 296-302 (1977).
87.N. Ōtake, S. Takeuchi, T. Endō and H. Yonehara, “Chemical studies on Blasticidin S part III. The struture of Blasticidin S,” Agricultural & Biological Chemistry, Vol. 30, pp. 132-141 (1966).
88.C. J. Kim, Y. Keun, G. T. Chun, “Enhancement of kasugamycin production by pH shock in batch cultures of streptomyces kasugaensis,” Biotechnology Progress, Vol. 16, pp. 548-552 (2000).
89.行政院農業委員會農業藥物毒物試驗所,植物保護手冊。
90.衛生署食品衛生署公告之蔬果殘留安全容許量,http://dohlaw.doh.gov.tw/Chi/NewsContent.asp?msgid=944。
91.Federal Register Rules and Regulations, Vol. 70, pp. 55748-55752 (2005).
92.行政院農業委員會農糧署,台灣農產品主要外銷國(地區)殘留農藥容許量標準,http://www.afa.gov.tw/Public/peasant/20063993357055.doc。
93.中華人民共合國農業部種植業管理司,植保植檢網,農藥合理使用準則,http://www.ppq.gov.cn/Article_Show.asp?ArticleID=284
94.M. Molina, M.Silva, “Simultaneous determination of phosphorus-containing amino acid-herbicides by nonionic surfactant micellar electrokinetic chromatography with laser-induced fluorescence detecton,” Electrophoresis, Vol. 22, pp. 1175-1181 (2001).
95.E. Poboży, W. Czarkowska, M. Trojanowicz, “Determination of amino acids in saliva using capillary electrophoresis with fluorimetric detection,” Journal of Biochemical and Biophysical methods, Vol. 67, pp. 37-47 (2006).
96.M. Molina, M.Silva, “Analytical potential of fluorescein analogues for ultrasensitive determination of phosphorus-containing amino acid herbicides by micellar electrokinetic chromatography with laser-induced fluorescence detection,” Electrophoresis, Vol. 23, pp. 1096-1103 (2002).
97.D. Z. Ewa, W. Maruszak, “Determination of dimethulamine and other low-molecular-mass amines using capillary electrophoresis with laser-induced fluorescence detection,” Journal of Chromatography B, Vol. 714, pp. 77-85 (1998).
98.P. R. Bamks and D. M. Paquette, “Comparison of three common amine reactive fluorescent probes used for conjugation to biomolecules by capillary zone electrophoresis,” Bioconjugate Chemistry, Vol. 6, pp. 447-458 (1995).
99.S. K. Lau, F. Zaccardo, M. Little, P. Banks, “Nanomolar derivatizations with 5-carboxyfluorescein succinimidyl ester for fluorescence detection in capillary electrophoresis,” Journal of Chromatography A, Vol. 809, pp. 203-210 (1998).
100.M. Molina, M.Silva, “In-capillary derivatization and analysis of amino acids, amino phosphonic acid-herbicides and biogenic amines by capillary electrophoresis with laser-induced fluorescence detection,” Electrophoresis, Vol. 23, pp. 2333-2340 (2002).
101.R. Siegler, L. A. Sternson and J. F. Stobaugh, “Suitability of DTAF as a fluorescent labeling reagent for direct analysis of primary and secondary amines-spectral and chemical reactivity considerations,” Journal of Pharmaceutical & Biomedical Analysis, Vol. 7, pp. 45-55 (1989).
102.Richard P. Haugland, Handbook of Fluorescent Probes and Research Products, Ninth Edition, Molecular Probes Company.
103.王鳳玉,「以毛細管電泳/雷射激發螢光偵測應用於微量藥物的分析」,碩士論文,朝陽科技大學應用化學系碩士班,台中(2003)。
104.王永吉,「毛細管電泳/雷射激發螢光偵測器分析血液中Kanamycin A的含量」,碩士論文,朝陽科技大學應用化學系碩士班,台中(2004)。
105.林憶芳,「毛細管電泳/雷射激發螢光分析人體血液中Aminoglycoside Antibiotics含量之研究」,碩士論文,朝陽科技大學應用化學系碩士班,台中(2005)。
106.Ludwig Huber, Validation and Qualification in Analytical Laboratories, Interpharm/ CRC, USA, pp. 127 (1999).
107.行政院環境保護署環檢所,「環境檢驗品質管制圖建立指引」,九十三年十月四日環署檢字第0930072069E號公告修正,自94年01月15日起實施,NIEA-PA105。
108.行政院環境保護署環檢所,「環境檢驗品質管制指引通則」,九十三年十月四日環署檢字第0930072069A號公告修正。
109.行政院環境保護署環檢所,「環境檢驗品管分析執行指引」,九十三年十月四日環署檢字第0930072069D號公告修正。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top