跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴昆輝
研究生(外文):Kun-Hai Lai
論文名稱:尺寸效應對基樁阻抗縱剖分析法檢測訊號之影響
論文名稱(外文):Dimensional Effect on the Signal of Impedance Log Pile Integrity Testing
指導教授:賴俊仁賴俊仁引用關係
指導教授(外文):Jiunnren Lai
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:68
中文關鍵詞:基樁完整性阻抗非破壞檢測
外文關鍵詞:NDTpileintegrityIL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:1
基樁等基礎工程一但埋入土層或水面下,其缺陷諸如頸縮、鼓脹、孔洞、斷裂等極不易查覺,早期驗收各項重要公共工程時,採用大型靜載重或高應變動力試驗,不僅須動用大型機具,費用甚鉅,耗時費力,且僅進行部份抽樣檢測,對於整體工程品質,易產生偏頗或疏漏之現象;此外試驗所需施加之外力甚大,檢測基樁極易造成無法回復之損害,因此發展出一套不傷害基樁主體、迅速、低成本且涵蓋性廣泛之檢測技術,將是未來的重要發展方向。
2006年Yu等﹝1﹞依據阻抗縱剖分析法(IL)之基本理論推導過程,將基樁視為一細長桿件,成功模擬含定斷面頸縮與鼓脹之阻抗剖面,根據該研究發現IL法對於檢測基樁之完整性極具可行性,然而實際基樁檢測過程中存在薄松比(Poisson''s effect)效應之影響,本研究應用ANSYS數值模擬軟體,採二維軸對稱方式進一步探討真實基樁檢測行為中薄松比效應對IL法檢測結果之影響,研究結果發現敲擊時間>300us(導入之波長大於3倍基樁直徑),可透過接收器距敲擊源之擺放距離減少薄松比效應之影響,此外檢測基樁之頸縮缺陷深度過大,會降低IL法檢測訊號之準確度,反之缺陷漫延長度較長,則IL法所獲得之檢測訊號準確度較高。
The defects such as neck and bulge of piers and piles are very difficult to defect when these deep foundations are buried under ground or below the water surface. In the past, static loading tests or High-Strain Dynamic tests were carried out to investigate the capacity of these foundations. But they waste time and money and can only test very few samples. Furthermore, these experiments utilize huge force which may cause unrecoverable damage to the foundations. For these reasons, to find out a method to defect the defects in the pile more efficient and cost less is one of the most important developing direction in the near future.

Yu and Liao(2006) developer an Impedance Log technique to obtain the integrity of piles. They performed 1-dimensional numerical simulation and found that this technique can successfully obtain the impedance profiles of piles with necks and bulges. However, the piles may subject to 3-dimensional effects in the field. Therefore, numerical studies were performed in this thesis to study the dimensional effects on the signal of Impedance Log Method. Results of these studies indicate that if the wave length of the impact is greater than 3-times the diameter of piles, the passion`s effect can be minimized by placing the receiver half way between the center and the edge of the pile top surface. The IL method can obtain more correct impedance profile of a pile if its necking is shallower in depth and longer in length.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的與方法 2
第二章 文獻回顧 4
2.1 前言 4
2.2 國內外相關文獻 4
第三章 理論背景 7
3.1 前言 7
3.2 音波回音法之原理介紹[19] 7
3.3 阻抗縱剖法之原理介紹[20] 10
3.3.1 基本原理 10
3.3.2 理論推導 11
3.4 數值模擬 14
3.4.1 1 DC Fortran程式 14
3.4.2 ANSYS程式 16
3.4.3 PILP程式 18
第四章 研究方法 19
4.1 前言 19
4.2 一維線桿件檢測訊號模擬 21
4.3 二維軸對稱波動訊號模擬 23
第五章 ㄧ維線桿件數值模擬結果 25
5.1 前言 25
5.2 敲擊時間對於速度歷時曲線之探討 25
5.3 敲擊時間對於阻抗剖面之探討 30
5.4 調節Kernel對於阻抗剖面之探討 31
第六章 二維軸對稱數值模擬結果 34
6.1 前言 34
6.2 數值模擬參數正確性驗證 34
6.2 接收器擺放位置 37
6.3 頸縮深度對於檢測訊號之影響 46
6.4 漫延長度對於檢測訊號之影響 51
6.5 薄松比效應下調節 Kernel對於阻抗剖面之探討 57
第七章 結論與建議 63
7.1 結論 63
參考文獻 65
表目錄
表5-1 敲擊時間對應之頻率與波長 27
表5-2 變化敲擊時間(tc)所獲得之基樁檢測結果 28
表6-1 接收器距敲擊源距離與基樁半徑之比值s/r 38
表6-2 頸縮變化與阻抗剖面之比較 48
表6-3 頸縮、漫延變化與阻抗剖面之比較 52
表6-4 Kernel調節之比較 59
圖目錄
圖1 研究流程圖 3
圖3-1 音波回音法示意圖 8
圖3-2 應力波在不同狀況下之反射圖[4] 9
圖3-3 阻抗縱剖分析法原理示意圖 11
圖3-4 介面處之入射波、反射波與折射波 11
圖3-5 SOLID 162元素示意圖 18
圖4-1 模擬基樁尺寸 21
圖4-2 Fortran程式模擬基樁之元素切割圖 22
圖4-3 ANSYS模擬試體元素切割圖 23
圖5-1 單頸縮基樁模擬試體 27
圖5-5 單頸縮基樁數值模擬速度歷時曲線(tc=10us) 30
圖5-6 單頸縮基樁數值模擬阻抗剖面 31
圖5-7 單頸縮基樁1DC數值模擬阻抗剖面(tc=500us) 32
圖5-8 單頸縮基樁1DC數值模擬阻抗剖面(tc=300us) 33
圖5-9 單頸縮基樁1DC數值模擬阻抗剖面(tc=100us) 33
圖6-2 單頸縮基樁之速度歷時曲線,tc=300us 36
圖6-3 單頸縮基樁之速度歷時曲線,tc=100us 36
圖6-4 基樁模擬試體接收器距敲擊源擺放位置示意 37
圖6-5 tc=500us,接收器距敲擊源0.12m(s/r=0.80) 39
圖6-6 tc=500us,接收器距敲擊源0.10m(s/r =0.67) 39
圖6-7 tc=500us,接收器距敲擊源0.08m(s/r =0.53) 40
圖6-8 tc=500us,接收器距敲擊源0.06cm(s/r =0.40) 40
圖6-9 tc=500us,接收器距敲擊源0.02m(s/r =0.13) 41
圖6-10 tc=300us,接收器距敲擊源0.12m(s/r =0.8) 41
圖6-11 tc=300us,接收器距敲擊源0.10m(s/r =0.67) 42
圖6-12 tc=300us,接收器距敲擊源0.08m(s/r =0.53) 42
圖6-13 tc=300us,接收器距敲擊源0.06m(s/r =0.40) 43
圖6-14 tc=300us,接收器距敲擊源0.02m(s/r =0.13) 43
圖6-15 tc=100us,接收器距敲擊源0.12m(s/r =0.80) 44
圖6-16 tc=100us,接收器距敲擊源0.10m(s/r =0.67) 44
圖6-17 tc=100us,接收器距敲擊源0.08m(s/r =0.53) 45
圖6-18 tc=100us,接收器距敲擊源0.06m(s/r =0.40) 45
圖6-19 tc=100us,接收器距敲擊源0.02m(s/r =0.13) 46
圖6-20 Impedance profile tc=500us,N/S=0.20,N/r=0.13 48
圖6-21 Impedance profile tc=500us,N/S=0.40,N/r=0.27 49
圖6-22 Impedance profile tc=500us,N/S=0.60,N/r=0.4 49
圖6-23 Impedance profile tc=500us,N/S=0.80,N/r=0.53 50
圖6-24 Impedance profile tc=500us,N/S=1.00,N/r=0.67 50
圖6-25 tc=500us,N/S=0.10,N/r=0.13,S/L=0.07 53
圖6-26 tc=500us,N/S=0.03,N/r=0.13,S/L=0.20 53
圖6-27 tc=500us, N/S=0.025,N/r=0.13,S/L=0.27 54
圖6-28 tc=500us,N/S=0.30,N/r=0.40,S/L=0.07 54
圖6-30 tc=500us,N/S=0.075,N/r=0.40,S/L=0.27 55
圖6-31 tc=500us,N/S=0.50,N/r=0.67,S/L=0.07 56
圖6-32 tc=500us,N/S=0.167,N/r=0.67,S/L=0.20 56
圖6-33 tc=500us,N/S=0.125,N/r=0.67,S/L=0.27 57
圖6-33 tc=300us,N/S=0.10,N/r=0.13,S/L=0.07(1 Dimensional) 59
圖6-34 tc=300us,N/S=0.10,N/r=0.13,S/L=0.07(axisymetric) 60
圖6-35 tc=300us,N/S=0.03,N/r=0.13,S/L=0.20(1 Dimensiomal) 60
圖6-36 tc=300us,N/S=0.03,N/r=0.13,S/L=0.20(axisymmetric) 61
圖6-37 tc=300us,N/S=0.025,N/r=0.13,S/L=0.27(1 Dimensional) 61
圖6-38 tc=300us,N/S=0.025,N/r=0.13,S/L=0.27(axisymmetry) 62
參考文獻

1.Yu, C. P. and Liao, S. T., “Theoretical basis and numerical simulation of impedance log test for evaluating the integrity of columns and pile,”Can. Geotech,J43,Vol.1238-1248,2006.
2.倪勝火,「基樁之非破壞檢測案例」,地工技術雜誌,第52期,第49-62
頁,1995。
3.ASTM, “Standard Test Method for Low Strain Integrity Testing of Piles,” Annual Book of ASTM Standards, D-5882, Vol. 04.08, 1995.
4.Parakash, C., Sharma, A. K., and Rastogi, P. C. (1992), “Diagnosis of Cast-in-place Piles Resting on Rock by FPDS,” Proceedings of the 4th Int. Conference on the Application of Stress-Wave Theory to piles, Hauge, Netherlands, pp. 305-310.
5.Stain, R. T. and Williams, H. T. (1991), “Interpretation of Sonic Coring Results: A Research Project,” Proceedings of the 4th Int. DFI Conference, Balkema,, pp. 633-640.
6.Baker, C. N. Jr., Drumeright, E. E., Mensah, F. D., Parikh, G., and Ealy, C. D(1991), “Use of Nondestructive Testing to Evaluate Defects in Drilled Shafts:Results of FHWA Research,” Transportation Research Record, No. 1331, pp. 28-35.
7.Han, B. W., and Wang, D. G. (1992), “Application of Sonic Tomography in the Integrity Testing of Concrete Piles,” Proceedings of the 4th Int. Conference on the Application of Stress-Wave Theory to piles, Hauge, Netherlands,pp.231-234.

8.倪勝火,「基樁施工之品質檢測」,非破壞檢測技術研討會,高雄,2000。
9.廖述濤,「基樁的脈波反應測試及力學導納分析」,檢測科技,十四卷二期(3-4),中華民國非破壞檢測協會,第94-103頁,1996。
10.廖述濤,「基樁完整性非破壞檢測」,營建工程非破壞檢測,臺北,1997。

11.傅國倫,「多重缺陷基樁之非破壞性檢測法之初步研究」,碩士論文,中華大學土木工程系,新竹,1999。
12.楊中佳,「含樁帽效應下之基樁非破壞檢測之研究」,碩士論文,中華大學土木工程系,新竹,2000。
13.余文裕,「在樁帽與群樁效應下檢測基樁長度之理論與實驗研究」,碩士論文,中華大學土木工程系,新竹,2001。
14.陳政豪,「基樁之平行震測法與超震法之研究」,碩士論文,中華大學土木工程系,新竹,1998。
15.陳元化,「基樁非破壞性檢測方法之應用」,中華技術期刊,第十一期,第55-65頁,1990。
16.廖述濤,余志鵬,「以阻抗縱剖分析法決定柱與基樁之缺陷的初步探討」,二十三屆力學會議,交大,新竹。
17.洪卿玲,“基樁型式基礎之應力波波動現象研究”, 碩士論文,朝陽科技大學營建工程系,台中,2000。
18.王弘義,「基樁應力波非破壞檢測技術之比較評估」,碩士論文,朝陽科技大學營建工程系,台中,2003。
19.謝旻勳,「獨立基樁非破壞檢測訊號之研究」,碩士論文,朝陽科技大學營建工程系,台中,2004。

20.吳俊彥,「阻抗縱剖分析法檢測基樁完整性之可行性評估」,碩士論文,朝陽科技大學營建工程系,台中,2006。
21.ASTM (1998), “Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using Impact-Echo Method,”Annual Book of ASTM Standards, C-1383, Vol. 04.02.
22.Application of Stress-Wave Theory to Pile, ed.F.B.J.Barends,Balkema, Rotterdam, 1992.
23.西北大學公共工程研究中心網頁,http://iti.acns.nwu.edu/
24.Paquet, J., “A New Method for Testing Integrity of Piles by Dynamic Impulse:The Impedance Log.(in French), ”International Colloquium on Deep Foundations, Paris, March, pp.1-10, 1991.
25.Rix, J.R., Jacobs, L.J.and Reichert, C.D., “Evaluation of Nondestructive Test Methods for Length, Diameter, and Stiffness Measurements on Drilled Shafts, ”Field Performance of Structure and Nondestructive Evaluation of Subsurface Infrastructure, Transportation Research Record, 1415, pp.69-77, 1993.
26.Paquet, J., “Pile Integrity Testing – the CEMTP Reflectogram, ”Piling:European Practice and Wordwide Trends, Tthomas Telford, London, pp.206-216, 1992.
27.Yu, C.P.and Roesset, J.M., “Dynamic Analysis of Structures Using Continuous Solutions in Frequency Domain”, Preceedings of EASEC-6 Conference on Structural Engineering & Construction, Taipei, Taiwan, Vol.2, Jan.14-16, pp 1369-1375. , 1998.
28.Liao, S.T. and Roesset, J.M., “Identification of Defects in Piles through Dynamic Testing, ”International Journal for Numerical and Analytical Methods in Geomechanics, 21, pp.277-291, 1997.
29.Lin, Y., Sansalone, M., and Carino, N. J.,“Impact-Echo Response of Concrete Shafts, ”Geotechnical Testing Journal, GTJODJ, Vol.14, No.2, pp. 121-137, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top