跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/26 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈婉琳
研究生(外文):WanLin Shen
論文名稱:厚複材積層平板製程模擬分析與參數最佳化
論文名稱(外文):Manufacturing Simulations and Processing Optimizations for Thick Composites
指導教授:王正賢王正賢引用關係
學位類別:碩士
校院名稱:大葉大學
系所名稱:工業工程與科技管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:95
語文別:中文
論文頁數:84
中文關鍵詞:預浸式複合材料固化過程有限元素法有限差分法基因演算法
外文關鍵詞:composite materialfinite-difference methodfinite element methodcuring cyclegenetic algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對整個成化過程中製程參數進行模擬,發現在厚層板中央均有些許的積溫現象,而其中層板的固化程度皆可接近完全固化,在壓力方面,隨著溫度逐漸上升,黏滯係數值的改變,造成整體壓力由樹脂轉為纖維承受,以達到成化過程完全反應。
傳統的熱固性預浸式複合材料,在製造過程中,其層板中央容易發生積溫、固化程度不均或固化不完全的現象,並造成內、外部溫度差異加大,在持續加熱與固定加壓的製造程序下,層板內部樹脂所承受的壓力分布、層板厚度與整個固化程度會隨著溫度上升而變化,造成複合材料層板因內外溫差過大而內部品質的不穩定性。
預浸式複合材料在整個成化過程中,溫度、壓力、與固化程度會隨著時間而變化,本計劃利用熱傳導公式,加上利用電腦商業軟體MATLAB進行模擬,與有限元素之ANSYS進行溫度解比較,並使用數值方法中的Finite-Difference Method中的Crank-Nicholson以求得(a)材料厚度與時間之關係、(b)溫度分布與時間之關係,(c)以及時間與中央層板的固化程度,所求得之初始參數再利用基因演算法進行最佳化設計。
In this research, the manufacturing parameter in curing cycle will be simulated. In the simulation, all of the middle laminates will be found the fact that the resulting temperature is lag and the laminate’s consolidation is nearly perfect. In compress, follow the increasing temperature the viscosity will be changed. Due to the changing, the pressure will load on fiber from resin. After that, the curing cycle will be finished.
The conventional thermosetting composite material present temperature lags, degree of cure un-uniform, and consolidation uncompleted in manufacturing process. Therefore, the difference between the middle and boundary laminate’s temperature is large. When the temperature keeps increase with steady pressure, the resin pressure, composite thickness, and degree of cure will be changed. Since the temperature’s difference between the middle and boundary laminate’s is large, the product’s quality will present instability.
In this study, the software, MATLAB and ANSYS, can get temperature’s results and compare them. The consolidation behavior of laminate is analyzed with Crank-Nicholson of finite difference method. Conclude these results, there is three conclusions can be gotten: the change of thickness, the temperature distribution and cure of middle laminate. Finally, through GA, the optimization’s design will be obtained.
封面內頁
簽名頁
授權書 iii
中文摘要 iv
Abstract v
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xii

第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究方法 4
第二章 文獻回顧 6
2.1 複合材料平板 6
2.2 有限差分法 8
2.2.1 向前差分法(Forward-difference Method) 13
2.2.2 向後差分法(Backward-difference Method) 15
2.2.3 中央差分法(Center-ward-difference Method) 16
2.3 啟發式演算法 17
第三章 數學模型 18
3.1 成化過程模型 18
3.1.1 熱傳導方程式 20
3.1.2 壓縮過程 22
3.1.3 邊界條件 24
3.2 數值分析 25
第四章 啟發式演算法 33
4.1 基因演算法 33
4.1.1 步驟程序 35
4.1.2 編碼 35
4.1.3 初始族群 36
4.1.4 適合函數 36
4.1.5 複製 37
4.1.6 交配 37
4.1.7 突變 40
4.2 演算法最佳化範例 40
第五章 結果與討論 48
5.1 厚層板成化溫度預測系統 48
5.1.1 基本介面概述 48
5.1.2 最佳化介面概述 53
5.2 結果探討 54
5.3 最佳化結果 61
5.3.1 最佳化驗證 62
5.3.2 最佳化結果比較 62
第六章 結論與未來研究方向 66
6.1 結論 66
6.2 未來研究方向 67
參考文獻 68
附錄一 材料性質 71
附錄二 窮舉法溫差結果 72
1. Young, W. B., “Compacting Pressure and Cure Cycle for Processing of Thick Composite Laminates,” Composites Science and Technology, Vol. 54, 1995, pp. 299-306.
2. Chang, M. H., Chen, C. L., and Young, W. B., “Optimal Design of the Cure Cycle for Consolidation of Thick Composite Laminates,” Polymer Composites, Vol. 17(5), October 1996, pp. 743-750.
3. Loos, A., and Springer, G., “Curing of Epoxy Matrix Composites,” Journal of Composite Materials, Vol. 17, 1983, pp. 135-169.
4. Gutowski, T. G., Morigaki, T., and Cai, Z., “The Consolidation of Laminate Composites,” Journal of Composite Materials, Vol. 21, February 1987, pp. 172-187.
5. Dave, R., Kardos, J. L., and Dudukovic, M. P., “A Model for Resin Flow During Composite Processing: Part 1-General Mathematical Development,” Polymer Composites, Vol. 8(1), February 1987, pp. 29-38.
6. Dave, R., Kardos, J. L., and Dudukovic, M. P., “A Model for Resin Flow During Composite Processing Part 2: Numerical Analysis for Unidirectional Graphite/Epoxy Laminates,” Polymer Composites, Vol. 8(2), April 1987, pp. 123-132.
7. Mijovic, J., and Wang, H. T., SAMPE J., 1988, pp. 42.
8. Hojjati, M., and Hoa, S. V., “Curing Simulation of Think Thermosetting Composites,” Composites Manufacturing, Vol. 5(3), 1994, pp. 159-169.
9. Young, W. B., “Resin Flow Analysis in the Consolidation of Multi-Directional Laminate Composites,” Polymer Composites, Vol. 16(3), June 1995, pp. 250-257.
10. Young, W. B., “Consolidation and Cure Simulations for Laminated Composites,” Polymer Composites, Vol. 17, 1996, pp. 142.
11. Twardowski, T. E., Lin, S. E., and Geil, P. H., “Curing in Thick Composite Laminates: Experiment and Simulation,” Journal of Composite Materials, Vol. 27(3), 1993, pp. 216-250.
12. Kim, C., Teng, H., Tucker, C. L. III, and White, S. R., “The Continuous Curing Process for Thermoset Polymer Composites. Part 1: Modeling and Demonstration,” Journal of Composite Materials, Vol. 29(9), 1995, pp. 1222-1243.
13. White, S. R., and Kim, Y. K., Composites Part A. Vol. 27A(3), 1996, pp. 219.
14. White, S. R., and Kim, C., 37th International SAMPE Symposium, 1992, pp. 240.
15. Bogetti, T. A., and Gillespie, J. W., Jr. Journal of Composite Materials, Vol. 25, 1991, pp. 239.
16. Stolin, A. M., Merzhanov, A. G., and Malkin, A. Ya., Polymer Engineering and Science, Vol. 19, 1979, pp. 1074.
17. Kenny, J. M., Apicella, A., and Nicolais, L., Polymer Engineering and Science, Vol. 29, 1989, pp. 973.
18. Wu, X., Yan, C., and Tang, J., 35th International SAMPE Symposium, 1990, pp. 2017.
19. Mathews, J. H., Numerical Methods for Mathematics, Science, and Engineering - 2nd, Prentice Hall, 1987.
20. Mnc, A., and Gurba, W., “Genetic Algorithms and Finite Element Analysis in Optimization of Composite Structures,” Composite and Structures, Vol. 54, 2001, pp. 275.
21. Park, J. H., Hwang, J. H., Lee, C. S., and Hwang, W., “Stacking Sequence Design of Composite Laminates for Maximum Strength Using Genetic Algorithms,” Composite and Structures, Vol. 52, 2001, pp. 217.
22. Smith, R. E., “A Technique for the Multi Objective Optimization of Laminated Composite Structure Using Genetic Algorithms and Finite Element Analysis,” Composite and Structures, Vol. 62, 2003, pp. 123.
23. Shin, D. D., and Hahn, H. T., “Compaction of Thick Composites: Simulation and Experiment,” Polymer Composites, Vol. 25(1), 2004, pp. 49-59.
24. Holland, J., Adaptation in Natural and Artificial Systems, Ann Arbor: University of Michigan Press, 1975.
25. Ansari, N., and Hou, E., “Computational Intelligence for Optimization,” Kluwer Academic, Boston, MA, 1999.
26. Krishnakumer, K., “Micro-Genetic Algorithm for Stationary and Non-Stationary Function Optimization,” SPIE 1196, Intelligent Control and Adaptive Systems, 1989, pp. 289-296.
27. Goldberg, D. E., “Genetic Algorithms in Search,” Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.
28. Senecal, P. K., “Numerical Optimization using the Gen4 Micro- Genetic Algorithm,” Engine Research Center, University of Wisconsin-Madison, August 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊