跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宗達
研究生(外文):Wu,Tsung-Ta
論文名稱:以連續式填充床生物反應器探討脂解酵素催化生質柴油之最優化合成
論文名稱(外文):Optimum Synthesis of Lipase-catalyzed Biodiesel Using a Continuous Packed-bed Bioreactor
指導教授:謝淳仁謝淳仁引用關係
指導教授(外文):Shieh, Chwen-Jen
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:生質柴油異丙醇脂解酵素轉酯化反應填充床生物反應器反應曲面法
外文關鍵詞:BiodieselIsopropanolLipaseTransesterificationPacked-bed reactorResponse surface methodology
相關次數:
  • 被引用被引用:5
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生質柴油為一種替代能源,具有環保、無毒性與可再生的優點,已成為國際各國關注的焦點。雖然現今商業界可由化學合成的方式來生產,但含有許多缺點,如合成副產物複雜與催化劑分離不易的問題,增加不少生產成本。相反地,以酵素催化合成生質柴油的條件相當溫和、副產物單純且更屬天然。因此,以酵素催化合成生質柴油成為國際間各國與商業界未來發展之趨勢。
本研究以固定化脂解酵素(Novozym® 435)催化大豆油與甲醇(或異丙醇),並配合填充床生物反應器進行轉酯化反應合成生質柴油,並利用反應曲面法(Response surface methodology, RSM)及三階層三變數之Box-Behnken實驗設計分別探討流速、反應溫度與基質莫耳比等反應參數對莫耳轉換率之影響,求得生質柴油最優化之合成條件。
實驗結果顯示,無論以甲醇或異丙醇為基質合成之生質柴油反應,流速與溫度皆為重要影響之因子。由反應曲面迴歸分析,在兩種不同基質中分別取得優化反應條件。以甲醇為基質之系統中,最優化之莫耳轉換率83.31 ± 2.07%。其各反應條件分別為溫度52.09 °C、流速0.10 mL/min與基質莫耳比1:4(大豆油:甲醇);以異丙醇為基質之系統中,最優化之莫耳轉換率76.62 ± 1.52%。其各反應條件分別為溫度51.5 °C、流速0.10 mL/min與基質莫耳比1:4.14(大豆油:異丙醇)。此外,分別以最優化之條件進行三次重複實驗得到82.81 ± 0.98與75.62 ± 0.81%之莫耳轉換率。最後在酵素重覆使用性可看出Novozym® 435可在長時間之下進行,十分適合連續式的反應。
以上實驗結果顯示,利用酵素於連續式系統中催化大豆油與甲醇(或異丙醇)合成生質柴油,莫耳轉換率皆屬良好。證明了以酵素催化法合成生質柴油可有效運用於工業上量產。
Biodiesel (fatty acid alkyl esters) is synthesized by transesterification of triglycerol with short-alcohol and have recently attracted attention due to its environmental benefits and renewable resource. Most of them are industrially produced by chemical method but it has many drawbacks such as high temperature, difficultly in revory glycerol, the removal requirement of salt residues, and high energy cost. To overcome these drawbacks, the utilization of biocatalysts (enzymatic) to synthesize biodiesel by transesterification under mild conditions has attracted considerable attention in recent years.
A useful method for enzymatic synthesis biodiesel catalyzed by immobilized lipase from Candida antarctica (Novozym® 435) in a continuous process was investigated. Novozym® 435 was packed in a packed-bed reactor to catalyzed transesterification of methanol (or isopropanol) and soybean oil for biodiesel synthesis in tert-butanol (or solvent-free) system will be discussed in this study. Response surface methodology (RSM) and 3-factor-3-level Box-Behnken design were employed to evaluate the effects of synthesis parameters, such as flow rate (0.1–0.5 mL/min),temperature (40–50 ºC), and substrate molar ratio of methanol (or isopropanol) to soybean oil (1:3–1:5) on percentage molar conversion of biodiesel by transesterification.
The result shows that temperature and flow rate were significant effects on the percent molar conversion in the two systems (methanol and isopropanol). Based on ridge max analysis, (1) in the conversion of methyl esters, the optimum conditions for synthesis were: temperature 52.09 C, flow rate 0.10 mL/min, and substrate molar ratio 1:4. The predicted value was 83.31 ± 2.07% and actual experimental value was 82.81 ± 0.98% molar conversion. (2) In the conversion of isopropyl esters, the optimum conditions for synthesis were: temperature 51.5 C, flow rate 0.10 mL/min, and substrate molar ratio 1:4.14. The predicted value was 76.62 ± 1.52% and actual experimental value was 75.62 ± 0.81% molar conversion. Moreover, synthesis methyl and isopropyl esters with continuous process did not show any appreciable decrease in the percent molar conversion for over 30 d and 7 d, respectively. It demonstrates that synthesis of lipase-catalyzed biodiesel was produce by effective in scale-up of industrialization.
封面內頁
簽名頁
授權書..........................................................iii
中文摘要........................................................iv
英文摘要........................................................vi
誌謝............................................................viii
目錄............................................................ix
表目錄..........................................................xii
圖目錄..........................................................xiii

1. 緒言........................................................ 1
2. 文獻探討..................................................... 5
2.1 生質柴油.................................................. 5
2.1.1 石油的枯竭與環境的影響.................................. 5
2.1.2 生質柴油的簡介......................................... 6
2.1.3 生質柴油之物性......................................... 7
2.1.4 全球生質柴油發展近況.................................... 9
2.1.5 生質柴油在台灣之發展.................................... 12
2.1.6 生質柴油的合成方法......................................12
2.1.7 轉酯化反應.............................................13
2.2 酵素......................................................15
2.2.1 酵素之優點............................................. 15
2.2.2 酵素固定化之優點........................................16
2.2.3 脂解酵素...............................................17
2.2.4 脂解酵素之應用..........................................17
2.2.5 Novozym® 435之介紹.....................................18
2.3 生物反應器................................................. 18
2.3.1 生物反應器種類..........................................19
2.4 相關文獻...................................................21
2.4.1 基質之相關探討......................................... 21
2.4.2 批次式生產生質柴油...................................... 23
2.4.3 連續式生產生質柴油......................................27
3. 材料與方法.................................................... 29
3.1 材料與方法................................................. 29
3.1.1 藥品.................................................. 29
3.1.2 儀器設備...............................................29
3.2 實驗設計...................................................30
3.2.1 反應變數範圍之選定...................................... 30
3.2.2 酵素之選擇............................................. 31
3.2.3 合成方法...............................................34
3.2.4 測量酵素水含量..........................................36
3.2.5 酵素活性分析............................................36
3.2.6 分析方法...............................................36
3.2.7 產率計算...............................................39
4. 結果與討論.................................................... 40
4.1 以連續式反應酵素催化大豆油與甲醇合成生質柴油...................40
4.1.1 溫度對連續式合成脂肪酸甲酯之莫耳轉換率影響.................40
4.1.2 流速對連續式合成脂肪酸甲酯之莫耳轉換率影響.................42
4.1.3 基質莫耳比對連續式合成脂肪酸甲酯之莫耳轉換率影響............44
4.1.4 脂肪酸甲酯之數據分析....................................44
4.1.5 脂肪酸甲酯之最優化合成探討............................... 47
4.1.6 重複使用性之探討(脂肪酸甲酯).............................56
4.2 以連續式反應酵素催化大豆油與異丙醇合成生質柴油..................58
4.2.1 溫度對連續式合成脂肪酸異丙酯之莫耳轉換率影響................58
4.2.2 流速對連續式合成脂肪酸異丙酯之莫耳轉換率影響................58
4.2.3 基質莫耳比對連續式合成脂肪酸異丙酯之莫耳轉換率影響...........61
4.2.4 脂肪酸異丙酯之數據分析....................................61
4.2.5 脂肪酸異丙酯之最優化合成探討..............................64
4.2.6 重複使用性之探討(脂肪酸異丙酯.............................70
4.3 合成脂肪酸甲酯與脂肪酸異丙酯之結果比較.........................74
5. 結論..........................................................75
參考文獻.........................................................77
附錄.............................................................87
1.李晉嘉。2003。以反應曲面法研究生化柴油之最優化酵素合成。大葉大學碩士論文。彰化。
2.政院經濟建設委員會。2006。中華民國96年國家建設計畫。下篇。第105–106頁。台灣。
3.陳國誠。2000。生物固定化技術與產業應用。第121–155頁。 茂昌圖書有限公司。臺北。
4.經濟部能源局網站: http://210.69.152.10/oil102/?group=g
5.Abigor, R. D., Uadia, P. O., Foglia, T. A., Haas, M. J., Jones, K. C., Okpefa, E., Obibuzor, J. U. and Bafor, M. E. 2000. Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils. Biochemical Society Transactions 28(6): 979–981.
6.Ali, Y. and Hanna, M. A. 1994. Alternative diesel fuels from vegetable oils. Bioresource Technology 50(2): 153–163.
7.Ali, Y., Hanna, M. A. and Leviticus, L. I. 1995. Emissions and power characteristics of diesel engines on methyl soyate and diesel fuel blends. Bioresource Technology 52(2): 185–195.
8.Altin, R., Çetinkaya, S. and Yücesu, H. S. 2001. Potential of using vegetable oil fuels as fuel for diesel engines. Energy Conversion and Management 42(5): 529–538.
9.Bai, S., Guo, Z., Liu, W. and Sun, Y. 2006. Resolution of (±)-menthol by immobilized Candida rugosa lipase on superparamagnetic nanoparticles. Food Chemistry 96(1):1–7.
10.Balcão, V. M. and Malcata, F. X. 1998. Lipase catalyzed modification of milkfat. Biotechnology Advances 16(2): 309–341.
11.Balcão, V. M., Paiva, A. L. and Malcata, F. X. 1996. Bioreactors with immobilized lipases: State of the art. Enzyme and Microbial Technology 18(6): 392–416.
12.Ban, K., Kaieda, M., Matsumoto, T., Kondo, A. and Fukuda, H. 2001. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal 8(1): 39–43
13.Ban, K., Hama, S., Nishizuka, K., Kaieda, M., Matsumoto, T., Kondo, A., Noda, H. and Fukuda, H. 2002. Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. Journal of Molecular Catalysis B Enzymatic 17(3–5): 157–165.
14.Chang, H. M., Liao H. F., Lee C. C. and Shieh, C. J. 2005. Optimized synthesis of lipase-catalyzed biodiesel by Novozym 435. Journal of Chemical Technology and Biotechnology 80(3): 307–312.
15.Chen, J. W. and Wu, W. T. 2003. Regeneration of immobilized Candida antarctica lipase for transesterfication. Journal of Bioscience and Bioengineering 95(5): 466–469.
16.Demirkol, S., Aksoy, H. W., Tüter, M., Ustun, G.. and Sasmaz, D. A. 2006. Optimization of enzymatic methanolysis of soybean oil by response surface methodology. Journal of the American Oil Chemists' Society 83(11): 929–932.
17.Derewenda, Z. S. and Sharp, A. M. 1993. News from the interface: The molecular structures of triacylglyceride lipases. Trends in Biochemical Sciences 18(1): 20–25.
18.Dossat, V., Combes, D. and Marty, A. 1999. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: Influence of the glycerol production. Enzyme and Microbial Technology 25(3–5): 194–200.
19.Du, D., Sato, M., Mori, M. and Park, E. Y. 2006. Repeated production of fatty acid methyl ester with activated bleaching earth in solvent-free system. Process Biochemistry 41(8): 1849–1853.
20.Du, W., Wang, L. and Liu, D. 2007. Improved methanol tolerance during Novozym435-mediated methanolysis of SODD for biodiesel production. Green Chemistry 9(2): 173–176.
21.Du, W., Xu, Y. and Liu, D. 2003. Lipase-catalysed transesterification of soya bean oil for biodiesel production during continuous batch operation. Biotechnology and Applied Biochemistry 38(2): 103–106.
22.Du, W., Xu, Y. Y., Liu, D. H. and Li, Z. B. 2005. Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. Journal of Molecular Catalysis B: Enzymatic 37(1–6): 68–71.
23.Du, W., Xu, Y., Liu, D. and Zeng, J. 2004. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic 30(3–4): 125–129.
24.Dunn, R. O., Shockley, M. W. and Bagby, M. O. 1996. Improving the low-temperature properties of alternative diesel fuels: Vegetable oil-derived methyl esters. Journal of the American Oil Chemists' Society 73(12): 1719–1728.
25.Fernando, S., Karra, P., Hernandez, R. and Jha, S. K. 2007. Effect of incompletely converted soybean oil on biodiesel quality. Energy 32(5): 844–851.
26.Foidl, N., Foidl, G., Sanchez, M., Mittelbach, M. and Hackel, S. 1996. Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresource Technology 58(1): 77–82.
27.Fomuso, L. B. and Akoh, C. C. 2002. Lipase-catalyzed acidolysis of olive oil and caprylic acid in a bench-scale packed bed bioreactor. Food Research International 35(1): 15–21.
28.Freedman, B., Pryde, E. H. and Mounts, T. L. 1984. Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists' Society 61(10): 1638–1643.
29.Guthalugu, N. K., Balaraman, M. and Kadimi, U. S. 2006. Optimization of enzymatic hydrolysis of triglycerides in soy deodorized distillate with supercritical carbon dioxide. Biochemical Engineering Journal 29(3): 220–226.
30.Hacking, M. A. P. J., Akkus, H., Van Rantwijk, F. and Sheldon, R. A. 2000. Lipase and esterase-catalyzed acylation of hetero-substituted nitrogen nucleophiles in water and organic solvents. Biotechnology and Bioengineering 68(1): 84–91.
31.Hama, S., Yamaji, H., Fukumizu, T., Numata, T., Tamalampudi, S., Kondo, A., Noda, H. and Fukuda, H. 2007. Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal 34(3): 273–278.
32.Hari Krishna, S., Manohar, B., Divakar, S., Prapulla, S. G. and Karanth, N. G. 2000. Optimization of isoamyl acetate production by using immobilized lipase from Mucor miehei by response surface methodology. Enzyme and Microbial Technology 26(2-4): 131–136.
33.Hsu, A. F. Jones, K. C. Foglia, T. A. and Marmer, W. N. 2004. Continuous production of ethyl esters of grease using an immobilized lipase. Journal of the American Oil Chemists' Society 81(8): 749–752.
34.Iso, M., Chen, B., Eguchi, M., Kudo, T. and Shrestha, S. 2001. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. Journal of Molecular Catalysis B: Enzymatic 16(1): 53–58.
35.Joshi, R. M. and Pegg, M. J. 2007. Flow properties of biodiesel fuel blends at low temperatures. Fuel 86(1-2): 143–151.
36.Kaieda, M., Samukawa, T. Matsumoto, T., Ban, K., Kondo, A., Shimada, Y., Noda, H., Nomoto, F., Ohtsuka, K., Izumoto, E. and Fukuda, H. 1999. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. Journal of Bioscience and Bioengineering 88(6): 627–631.
37.Knapp, T. and Mookerjee, R. 1996. Population growth and global CO2 emissions: A secular perspective. Energy Policy 24(1): 31–37.
38.Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology 86(10): 1059–1070.
39.Knothe, G., Matheaus, A. C. and Ryan III, T. W. 2003. Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82(8): 971–975.
40.Kojima, S., Du, D., Sato, M. and Park, E. Y. 2004. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent. Journal of Bioscience and Bioengineering 98(6): 420–424.
41.Körbitz, W. 1999. Biodiesel production in Europe and North America, an encouraging prospect. Renewable Energy 16(1-4): 1078–1083.
42.Köse, O., Tüter, M., and Aksoy, H. Ayşe. 2002. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresource Technology 83(2): 125–129.
43.Krisnangkura, K. 1986. Simple method for estimation of cetane index of vegetable oil methyl esters. Journal of the American Oil Chemists' Society 63(4): 552–663.
44.Kuo, T. M. and Gardner, H. W. 2002. Lipid biotechnology. p. 387–398. Marcel dekker. New York. USA.
45.Ladommatos, N., Parsi, M. and Knowles, A. 1996. The effect of fuel cetane improver on diesel pollutant emissions. Fuel 75(1): 8–14.
46.Lai, C. C., Zullaikah, S., Vali, S. R. and Ju, Y. H. 2005. Lipase-catalyzed production of biodiesel from rice bran oil. Journal of Chemical Technology and Biotechnology 80(3): 331–337.
47.Lang, X., Dalai, A. K., Bakhshi, N. N., Reaney, M. J. and Hertz, P. B. 2001. Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technology 80(1): 53–62.
48.Lara Pizzrro, P. V. and Park, E. Y. 2004. Potential application of waste activated bleaching earth on the production of fatty acid alkyl esters using Candida cylindracea lipase in organic solvent system. Enzyme and Microbial Technology 34(3-4): 270–277.
49.Li, W., Du, W. and Liu, D. 2007. Optimization of whole cell-catalyzed methanolysis of soybean oil for biodiesel production using response surface methodology. Journal of Molecular Catalysis B: Enzymatic 45(3–4): 122–127.
50.Li, L., Du, W., Liu, D., Wang, L. and Li, Z. 2006. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. Journal of Molecular Catalysis B: Enzymatic 43(1–4): 58–62.
51.Lin, C. Y. and Lin, H. A. 2006. Diesel engine performance and emission characteristics of biodiesel produced by the peroxidation process. Fuel 85(3): 298–305.
52.Linko, Y. Y., Lämsä, M., Wu, X., Uosukainen, E., Seppälä, J. and Linko, P. 1998. Biodegradable products by lipase biocatalysis. Journal of Biotechnology 66(1): 41–50.
53.Ma, F., Clements, L. D. amd Hanna, M. A. 1998. The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Transactions of the American Society of Agricultural Engineers 41(5): 1261–1264.
54.Ma, F. and Hanna M. A. 1999. Biodiesel production: a review. Bioresource technology 70(1): 1–15.
55.Malcata, F. X., Reyes, H. R., Garcia, H. S., Hill Jr., C. G. and Amundson, C. H. 1990. Immobilized lipase reactors for modification of fats and oils. A review. Journal of the American Oil Chemists' Society 67(12): 890–910.
56.Modi, M. K., Reddy, J. R. C., Rao, B. V. S. K. and Prasad, R. B. N. 2007. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresource Technology 98(6): 1260–1264.
57.Nelson, L. A., Foglia, T. A. and Marmer, W. N. 1996. Lipase-catalyzed production of biodiesel. Journal of the American Oil Chemists' Society 73(9): 1191–1195.
58.Nie, K., Xie, F., Wang, F. and Tan, T. 2006. Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel production. Journal of Molecular Catalysis B: Enzymatic 43(1–4): 142–147.
59.Nielsen, N. S., Yang, T., Xu, X. and Jacobsen, C. 2006. Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor. Food Chemistry 94(1): 53–60.
60.Noureddini, H., Gao, X. and Philkana, R. S. 2005. Immodilized Pseudomnas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology 96(7): 769–777.
61.Pahl, G. 2005. Biodiesel: growing a new energy economy. p. 1–120. Chelsea green publishing company. USA.
62.Park, E. Y. and Mori, M. 2005. Kinetic study of esterification of rapeseed oil contained in waste activated bleaching earth using Candida rugosa lipase in organic solvent system. Journal of Molecular Catalysis B: Enzymatic 37(1–6): 95–100.
63.Park, E.Y., Sato, M. and Kojima, S. 2006. Fatty acid methyl ester production using lipase-immobilizing silica particles with different particle sizes and different specific surface areas. Enzyme and Microbial Technology 39(4): 889–896.
64.Pizarro, A. V. L. and Park, E. Y. 2003. Lipase-catalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth. Process Biochemistry 38(7): 1077–1082.
65.Posorske, L. H. 1984. Industrial-scale application of enzymes to the fats and oil industry. Journal of the American Oil Chemists' Society 61(11): 1758–1760.
66.Pramanik, K. 2003. Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renewable Energy 28: 239–248.
67.Pryde, E. H. 1983. Vegetable oils as diesel fuels: overview. Journal of the American Oil Chemists' Society 60(8): 1577–1588.
68.Royon, D., Daz, M., Ellenrieder, G. and Locatelli, S. 2007. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology 98(3): 648–653.
69.Salis, A., Solinas, V. and Monduzzi, M. Wax esters synthesis from heavy fraction of sheep milk fat and cetyl alcohol by immobilised lipases. Journal of Molecular Catalysis B: Enzymatic 21(4-6): 167–174.
70.Salis, A., Pinna, M., Monduzzi, M. and Solinas, V. 2005. Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology 119(3): 191–299.
71.Samukawa, T., Kaieda, M., Matsumoto, T., Ban, K., Kondo, A., Shimada, Y., Noda, H. and Fukuda, H. 2000. Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. Journal of Bioscience and Bioengineering 90(2): 180–183.
72.Schumacher, L. G., Borgelt, S. C., Fosseen, D., Goetz, W. and Hires, W. G. 1996. Heavy-duty engine exhaust emission tests using methyl ester soybean oil/diesel fuel blends. Bioresource Technology 57(1): 31–36.
73.Shieh, C. J., Akoh, C. C. and Yee, L. N. 1996. Optimized enzymatic synthesis of geranyl butyrate with lipase AY from Candida rugosa. Biotechnology and Bioengineering 51(3): 371–374.
74.Shieh, C. J., Liao, H. F. and Lee, C. C. 2003. Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresource Technology 88(2): 103–106.
75.Shimada, Y., Watanabe, Y., Samukawa, T., Sugihara, A., Noda, H., Fukuda, H. and Tominaga, Y. 1999. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society 76(7): 789–793.
76.Shimada, Y., Watanabe, Y., Sugihara, A. and Tominaga, Y. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B: Enzymatic 17(3–5): 133–142.
77.Shah, S., Sharma, S., and Gupta, M. N. 2004. Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy and Fuels 18(1): 154–159.
78.Shah, S. and Gupta, M. N. 2007. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochemistry 42(3): 409–414.
79.Soumanou, M. M. and Bornscheuer, U. T. 2003. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme and Microbial Technology 33(1): 97–103.
80.Soumanou, M. M. and Bornscheuer, U. T. 2003. Lipase-catalyzed alcoholysis of vegetable oils. European Journal of Lipid Science and Technology 105(11): 656–660.
81.Vicente, G., Coteron, A., Martinez, M. and Aracil, J. 1998. Application of the factorial design of experiments and response surface methodology optimize biodiesel production. Industrial Crops and Products 8(1): 29–35.
82.Wang, L., Du, W., Liu, D., Li, L. and Dai, N. 2006. Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic 43(3–5): 29–32.
83.Watanabe, Y., Pinsirodom, P., Nagao, T., Yamauchi, A., Kobayashi, T., Nishida, Y., Takagi, Y. and Shimada, Y. 2007. Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase. Journal of Molecular Catalysis B: Enzymatic 44(3–4): 99–105.
84.Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda, H. and Tominaga, Y. 2000. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society 77(4): 355–360.
85.Watanabe, Y., Shimada, Y., Sugihara, A. and Tominaga, Y. 2001. Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. Journal of the American Oil Chemists' Society 78(7): 703–707.
86.Watanabe, Y., Shimada, Y., Sugihara A., Tominaga, Y. 2002. Conversion of degummed soybean oil to biodiesel fuel with Immobilized Candida antarctica lipase. Journal of Molecular Catalysis B: Enzymatic 17(3–5): 151–155.
87.Xi, W. W. and Xu, J. H. 2005. Preparation of enantiopure (S)-ketoprofen by immobilized Candida rugosa lipase in packed bed reactor. Process Biochemistry 40(6): 2161–2166.
88.European Biodiesel Brand. http://www.ebb-eu.org/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top