跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/09 14:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張啟霆
研究生(外文):Chang Chi Ting
論文名稱:培養基組成與液態培養條件對Rhizopusoligosporus發酵產物之理化性質的影響
論文名稱(外文):The Effects of Media Composition and Cultivation Condition on Physical Properties of Fermented Product of Rhizopus oligosporus by Liquid Culture
指導教授:陳明造陳明造引用關係
指導教授(外文):Chen Ming Tsad
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:天貝菌單離大豆蛋白液態培養γ-胺基丁酸(GABA)
外文關鍵詞:Tempeh Rhizopus oligosporussoy protein concentrateliquid cultureGama-aminobutyric acidprotease activity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:803
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
中文摘要

天貝(tempeh)為印尼的一種傳統醱酵食品,一般以蒸煮黃豆接種天貝菌Rhizopus oligosporus,以固態培養而成。本研究擬以3%、5%及10%單離大豆蛋白(含90%粗蛋白),分別添加20%的馬鈴薯萃取液(馬鈴薯:無菌水=1:5)、0.5%可溶性澱粉、0.5% KH2PO4及0.25% MgSO4•7H2O作為基質培養Rhizopus oligosporus,並以125 rpm、150 rpm及175 rpm之不同轉速震盪液態培養,經醱酵24、36、48及60小時,比較各醱酵時間與培養基之代謝物成分,包括多醣減少程度、天貝菌數、澱粉酶活性蛋白酶活性、蛋白質水解率及γ-胺基丁酸(GABA)含量之差異性。由結果得知:添加5%單離大豆蛋白,於125 rpm轉速醱酵60小時有最高多醣減少程度85.12%;添加10%單離大豆蛋白,於125 rpm轉速醱酵48小時有最高的天貝菌數1.84×109CFU/ml,於150 rpm轉速醱酵60小時有最高的澱粉酶、蛋白酶及蛋白質水解率,分別為39.48U/ml、420.00U/ml及91.88%,於175 rpm轉速醱酵48小時有最高的GABA含量4.51 mg/ml。
綜合以上結果,建議添加10%大豆蛋白,以150 rpm轉速醱酵60小時為較好的發酵條件。
ABSTRACT

Tempeh is a traditional fermented food in Indonesia, the steamed soybean are used as raw material and inoculated with Rhizopus oligosporus, which is so called solid fermentation. In this study, 3%, 5% and 10% concentrate protein are separately added with 20% potato extract solution, 0.5% soluble starch, 0.5% patassium dihydrogenphosphate and 0.25% magnesium sulfate heptahydrate as culture media, which were inoculated with Rhizopus oligosporus, and liquid cultured with different shaking rates, and fermented for 24, 36, 48 and 60 hours. The fermented products were used to determine polysaccharide decreased percentage, Rhizopus oligosporus counts, amylase activity, protease activity, protein hydrolysis percentage and Gama-aminobutyric acid (GABA) content of the metabolites. The results show: 5% soy protein isolate cultured shaking for 60 hours by 125 rpm had the maximum polysaccharide decreased percentage of 85.12%, cultured shaking for 60 hours by 175 rpm had the maximum pH value of 7.99. 10% soy protein isolate cultured shaking for 48 hours by 125 rpm had the maximum Rhizopus oligosporus counts of 1.84×109 CFU/ml, cultured shaking for 60 hours by 150 rpm had the maximum amylase activity, protease activity and protein hydrolysis percentage respectively of 39.48 U/100 ml, 420.00 U/100 ml and 91.88%, cultured shaking for 48 hours by 175 rpm had the maximum Gama-aminobutyric acid (GABA) content was 4.51 mg/ml.
The result indicated that 5% soy protein, 60 hours fermenting time and 150 rpm shaking speed are the optimal fermenting conditions for tempeh.
目錄

封面內頁
簽名頁
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目錄 vii
圖目錄 xiii
表目錄 xv

1. 前言 1
2. 文獻回顧 3
2.1大豆蛋白 3
2.1.1大豆蛋白簡介 3
2.1.2大豆蛋白之組成 4
2.1.3大豆蛋白之胺基酸組成 6
2.1.4大豆蛋白之抗營養因子 9
2.2天貝 10
2.2.1天貝菌 10
2.2.2天貝之簡介 11
2.2.3天貝之液態培養優點 12
2.3天貝之機能性成分 12
2.3.1異黃酮 12
2.3.2γ-胺基丁酸 13
2.3.3牛乳凝乳活性 16
2.4胺基酸 17
3.材料與方法 19
3.1實驗藥品與儀器 19
3.1.1材料 19
3.1.2藥品 19
3.1.3儀器 20
3.2實驗方法 21
3.2.1Rhizopus oligosporus培養 21
3.2.1.1菌種活化 21
3.2.1.2試驗處理 21
3.3化學成分分析 22
3.3.1水分測定 22
3.3.2pH值 23
3.3.3多醣 23
3.3.3.1多醣萃取液之製備 23
3.3.3.2多醣之測定 23
3.3.4總生菌數 24
3.3.5澱粉酶活性 25
3.3.5.1澱粉酶酵素液之製備 25
3.3.5.2澱粉酶活性測定 25
3.3.6蛋白酶活性 27
3.3.6.1蛋白酶酵素液之製備 27
3.3.6.2蛋白酶活性測定 27
3.3.7水解率 28
3.3.7.1水解率萃取液之製備 28
3.3.7.2水解率之測定 28
3.3.8GABA分析 29
3.3.8.1GABA之萃取及衍生 30
3.3.8.2GABA濃度之測定 30
3.3.8.3GABA之HPLC條件 31
3.4統計分析 32
4.結果與討論 33
4.1添加不同比例之單離大豆蛋白於不同震盪轉速對培養Rhizopus oligosporus之水份比較 33
4.1.1 添加不同比例之單離大豆蛋白在轉速125rpm震盪培養Rhizopus oligosporus之水分比較 33
4.1.2 添加不同比例之單離大豆蛋白在轉速150rpm震盪培養Rhizopus oligosporus之水分比較 35
4.1.3 添加不同比例之單離大豆蛋白在轉速175rpm震盪培養Rhizopus oligosporus之水分比較 37
4.2添加不同比例之單離大豆蛋白於不同震盪轉速對培養Rhizopus oligosporus之pH值比較 39
4.2.1 添加不同比例之單離大豆蛋白在轉速125rpm震盪培養Rhizopus oligosporus之pH值比較 39
4.2.2 添加不同比例之單離大豆蛋白在轉速150rpm震盪培養Rhizopus oligosporus之pH值比較 41
4.2.3 添加不同比例之單離大豆蛋白在轉速175rpm震盪培養Rhizopus oligosporus之pH值比較 43
4.3添加不同比例之單離大豆蛋白於不同震盪轉速對培養Rhizopus oligosporus之多醣減少程度比較 45
4.3.1 添加不同比例之單離大豆蛋白在轉速125rpm震盪培養Rhizopus oligosporus之多醣減少程度比較 45
4.3.2 添加不同比例之單離大豆蛋白在轉速150rpm震盪培養Rhizopus oligosporus之多醣減少程度比較 47
4.3.3 添加不同比例之單離大豆蛋白在轉速175rpm震盪培養Rhizopus oligosporus之多醣減少程度比較 49
4.4添加不同比例之單離大豆蛋白於不同震盪轉速對培養Rhizopus oligosporus之天貝菌數比較 51
4.4.1 添加不同比例之單離大豆蛋白在轉速125rpm震盪培養Rhizopus oligosporus之天貝菌數比較 51
4.4.2 添加不同比例之單離大豆蛋白在轉速150rpm震盪培養Rhizopus oligosporus之天貝菌數比較 53
4.4.3 添加不同比例之單離大豆蛋白在轉速175rpm震盪培養Rhizopus oligosporus之天貝菌數比較 55
4.5添加不同比例之單離大豆蛋白於不同震盪轉速對培養Rhizopus oligosporus之澱粉酶活性比較 57
4.5.1 添加不同比例之單離大豆蛋白在轉速125rpm震盪培養Rhizopus oligosporus之澱粉酶活性比較 57
4.5.2 添加不同比例之單離大豆蛋白在轉速150rpm震盪培養Rhizopus oligosporus之澱粉酶活性比較 59
4.5.3 添加不同比例之單離大豆蛋白在轉速175rpm震盪培養Rhizopus oligosporus之澱粉酶活性比較 61
4.6添加不同比例之單離大豆蛋白於不同震盪轉速對培養Rhizopus oligosporus之蛋白酶活性比較 64
4.6.1 添加不同比例之單離大豆蛋白在轉速125rpm震盪培養Rhizopus oligosporus之蛋白酶活性比較 64
4.6.2 添加不同比例之單離大豆蛋白在轉速150rpm震盪培養Rhizopus oligosporus之蛋白酶活性比較 66
4.6.3 添加不同比例之單離大豆蛋白在轉速175rpm震盪培養Rhizopus oligosporus之蛋白酶活性比較 68
4.7添加不同比例之單離大豆蛋白於不同震盪轉速對培養Rhizopus oligosporus之蛋白質水解率比較 71
4.7.1 添加不同比例之單離大豆蛋白在轉速125rpm震盪培養Rhizopus oligosporus之蛋白質水解率比較 71
4.7.2 添加不同比例之單離大豆蛋白在轉速150rpm震盪培養Rhizopus oligosporus之蛋白質水解率比較 73
4.7.3 添加不同比例之單離大豆蛋白在轉速175rpm震盪培養Rhizopus oligosporus之蛋白質水解率比較 75
4.8添加不同比例之單離大豆蛋白於不同震盪轉速對培養Rhizopus oligosporus之GABA含量比較 78
4.8.1 添加不同比例之單離大豆蛋白在轉速125rpm震盪培養Rhizopus oligosporus之GABA含量比較 78
4.8.2 添加不同比例之單離大豆蛋白在轉速150rpm震盪培養Rhizopus oligosporus之GABA含量比較 80
4.8.3 添加不同比例之單離大豆蛋白在轉速175rpm震盪培養Rhizopus oligosporus之GABA含量比較 82
5. 結論 85
參考文獻 87

圖目錄

圖2.1GABA於真菌中之代謝途徑 14
圖2.2 真菌於無菌生殖中GABA代謝之相關產物及酵素 15
圖2.3 微生物胺基酸的合成途徑 18
圖3.1 葡萄糖標準曲線(多醣)24
圖3.2 葡萄糖標準曲線(澱粉酶活性)26
圖3.3 雙肽標準曲線 29
圖3.4 GABA標準曲線 31
圖4.1 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之水分比較 34
圖4.2 添加不同比例單離大豆蛋白之液態培養基於150rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之水分比較 36
圖4.3 添加不同比例單離大豆蛋白之液態培養基於175rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之水分比較 38
圖4.4 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之pH值比較 40
圖4.5 添加不同比例單離大豆蛋白之液態培養基於150rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之pH值比較 42
圖4.6 添加不同比例單離大豆蛋白之液態培養基於175rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之pH值比較 44
圖4.7 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之天貝菌數比較 52
圖4.8 添加不同比例單離大豆蛋白之液態培養基於150rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之天貝菌數比較 54
圖4.9 添加不同比例單離大豆蛋白之液態培養基於175rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之天貝菌數比較 56
圖4.10 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之GABA含量比較 79
圖4.11 添加不同比例單離大豆蛋白之液態培養基於150rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之GABA含量比較 81
圖4.12 添加不同比例單離大豆蛋白之液態培養基於175rpm震盪培養Rhizopus oligosporus之24-60小時對其醱酵產物之GABA含量比較 84

表目錄

表2.1 大豆蛋白質之主要成分 6
表2.2 胺基酸需要量和大豆產品的胺基酸組成 8
表3.1 Rhizopus oligosporus液態培養基之組成 22
表4.1 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之0-60小時對多醣減少程度比較 46
表4.2 添加不同比例單離大豆蛋白之液態培養基於150rpm震盪培養Rhizopus oligosporus之0-60小時對多醣減少程度比較 48
表4.3 添加不同比例單離大豆蛋白之液態培養基於175rpm震盪培養Rhizopus oligosporus之0-60小時對多醣減少程度比較 50
表4.4 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對澱粉酶活性比較 58
表4.5 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對澱粉酶活性比較 60
表4.6 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對澱粉酶活性比較 63
表4.7 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對蛋白酶活性比較 65
表4.8 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對蛋白酶活性比較 67
表4.9 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對蛋白酶活性比較 70
表4.10 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對蛋白質水解率比較 72
表4.11 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對蛋白質水解率比較 74
表4.12 添加不同比例單離大豆蛋白之液態培養基於125rpm震盪培養Rhizopus oligosporus之24-60小時對蛋白質水解率比較 77
參考文獻

1.王三郎。1994。應用微生物學。高立出版社。台北。
2.王三郎。2005。應用微生物學四版。高立出版社。台北。
3.田村哲彥。1993。健康醋大豆。正義出版社。台北。
4.朱燕華。1994。淺談大豆蛋白質及其應用。食品工業26(1):15-18。
5.吳獻花、王樹坤。1999。植物性微生物發酵食品的研究進展。中國微生態學雜誌。11(2):87-91。
6.徐德平、江漢湖。2005。天貝異黃酮生物活性增強的機理研究。食品與生物技術學報。24(3):1673-1689。
7.財團法人生物技術發展中心。1989。胺基酸產業市場調查。台北。
8.凌美月、周正俊。1995。Aspergillus oryzae在不同擠壓醬油發酵基質上之生長及發酵生產。中國農業會誌。33:521-532。
9.陳仲仁。黃豆蛋白的組織、 功能特性及在食品上的應用。食品工業29(3):19-28。
10.張南玲。1993。胃腸系統內γ-胺基丁酸研究的進展。國外醫學: 生理病理科學與臨床分冊。013(003):139-142。
11.張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文。1995。食品化學。台北。
12.游芸悌。2003。以納豆菌生產生物性高分子之研究。私立大葉大學環境工程所碩士論文。彰化。
13.董大成。黃豆可比高麗參。1993。元氣齋出版社。台北。
14.蔡孟貞。2001。大豆蛋白之凝膠機制。食品工業月刊。33:32-38。
15.劉馨璘。2005。Bacillus subtilis var. natto及Rhizopus microsporus var. oligosporus混合發酵對去種皮黑豆機能性成分生成之影響。私立大葉大學生物產業科技所碩士論文。彰化。
16.鄭心怡。1993。磷脂質與健康。名望出版社。台北。
17.鄭斯元。2003。噴霧乾燥條件對鯖柴魚水解物胜肽活性之影響。國立臺灣海洋大學食品科學所碩士論文。基隆。
18.Abe, Y., Umemura, S., Sugimotto, K., Hirawa, N., Kato, Y., Yokoyama, T., Iwai, J. and Ishii, M., 1995. Effect of green tea rich in γ-aminobutyric acid on blood pressure on dahl salt-sensitive rats. Am. J. Hypertens. 8: 74-79.
19.Aoki, H., Furuya, Y., Endo, Y. and Fujimoto, K., 2003. Effect of γ-aminobutyric acid-enriched tempeh-like fermented soybean (GABA-tempeh) on the blood pressure of spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 67: 1806-1808.
20.AOAC, 1990. In: Helrich, E. (istyed.), Official Methods of Analysis of the Association of Official Chemists, (Fifteenth edition) Association of Official Chemists, Virginia.
21.Bailey, C. R., Arst, H. N. and Penfold, H. A. 1980. A third gene affecting GABA transaminase levels in Aspergillus nidulans. Gen. Res. 36: 167-180.
22.Bayley, H. S. and W. E. Carlson. 1970. Comparisons of simple and complex diets for baby pigs: Effects of form of feed and glucose addition. J. Anim. Sci. 30: 394-401.
23.Beizhong, H., Jeroen, L. K. and Rombouts, M. J. and Robert Nout. 1999. Solid-substrate fermentation of soybean with Rhizopus spp.: Comparison of dicontinuous rotation with stationary bed fermentation. J. Biosci. Bioeng. 88(2): 205-209.
24.Beizhong, H., Yong, M., Frans, M., Rombouts, M. J. and Robert, Nout. 2003. Effects of temperature and relative humidity on growth and enzyme production by Actinomucor elegans and Rhizopus oligosporus during sufu pehtze preparation. Food Chem. 81: 27-34.
25.Bernard Gibbs, B.F., Zougman A., Masse R., Mulligan C. 2004. Production and characterization of bioactive from soy hydrolysate and soy-fermented food. Food Res. Int. 37: 123-131.
26.Bertola, N. C., Califano, A. N., Bevilacqua, A. E. and Zaritzky, N. E. 2000. Effect of ripening conditions on the texture of Gounda cheese. Int. J. Food Sci. Tech. 35: 207-214.
27.Buckel, W. 1986. Substrate stereochemistry of the biotindependent sodium pump glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. Eur. J. Biochem. 156: 259-263.
28.Cato, E. P., Johnson, J. L., Hash, D. E. and Holdeman, L. V. 1983. Synonymy of Peptococcus glycinophilus with Peptostreptococcus micros and electrophoretic differentiateon of Peptostreptococcus micros from Peptococcus magnus. Inst. J. Syst. Bacteriol. 33: 207-210.
29.Catsimpoolas, N. 1969. A note on proposal of an immunochemical system of reference and nomenclature for the major soybean globulin. Cereal Chem. 46: 369-372.
30.Church, F. C., Swaisgood, H. E., Porter, D. H. and Catignani, G. L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66: 1219-1227.
31.Dibois, M., Gilles, K. A., Hamilton, J. K., Reber, P. A. and Smith F. 1956. Colorimetric method for determineation of sugars and related substances. Analytical Chem. 28(3): 350-356.
32.Dreau, D., J. P. Lalles, V. Philouze, R. Toullec and H. Salmon. 1994. Local and systemic immune responses to soybean protein ingestion in early weaned pigs. J. Anim. Sci. 72: 2090-2098.
33.Dürre, P., Spahr, R. and Andreesen, J. R. 1983. Glycine fermentation via glycine reductase in Peptococcus glycinophilus and Peptococcus magnus. Arch. Microbiol. 134: 127-135.
34.Egounlety, M. and Awoth, O. C. 2003. Effect of soaking, dehulling, cookingand fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean ( Glycine max Merr. ), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). J. Food Eng. 56: 249-254.
35.Erdman, J. W. 2000. AHA Science Advisory: Soy protein and cardiovascular disease: a statement for healthcare professionals from the Nutrition Committee of the AHA. Circul. 102: 2555-2559.
36.Escobar, J. and Barnett, S. M. 1993. Effect of agitateon speed on the synthesis of Mucor miehei acid protease. Enzyme Microb. Tech. 15: 1009-1013.
37.FDA. 1992. Bacteriological Analytical Manual. Association of official chemists. Washington, D. C.
38.Feng, J. and Y. L. Xiong. 2002. Interaction of myofibrillar and preheated soy protein. J. Food Sci. 67: 2851-2856.
39.Feng, X. M., Anders R.B. Eriksson, Johan Schnürer. 2005. Growth of lactic acid bacteria and Rhizopus oligosporus during barley tempeh fermentation, International J. Food Micro. 104: 249-256.
40.Food and Drug Administration. 1999. Food labeling: health claims; soy protein and coronary heart disease. Fed Reg. 64: 57699-57733.
41.Fox, PF, Law, J., McSweeney, P. L. H. and Wallace, J. 1993. Biochemistry of cheese ripening. In: Fox PF, editor. Cheese Chemistry Physics and Microbiology, vol. II. London: Chapman & Hall. 389-438.
42.Friesen, K. G., J. L. Nelssen, R. D. Goodband, K. C. Behnke, and L. J. Kats. 1993. The effect of moist extrusion of soy products on growth performance and nutrient utilization in the early-weaned pig. J. Anim. Sci. 71: 2099-2109.
43.Fukushima, D. 1968. Internal structure of 7S and 11S globulin molecules in soybean proteins. Cereal Chem. 45: 203-207.
44.Garcìa, M. C., M. Torre, M. L. Marina and F. Laborda. 1997. Composition and characterization of soybean and related products. CRC. Crit. Rev. Food Sci. Nutr. 37: 361-391.
45.György, P., Murata, K. and Ikehata, H. 1964. Antioxidants isolated from Fermented Soybeans (Tempeh). Nature 203: 870-872.
46.Hachmeister, K. A. and Fung, D. Y. 1993. Tempeh: A mold-modified indigenous fermented food made from soybeans and/or cereal grains. Crit. Rev. Microbiol. 19 (3): 137-188.
47.Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K., Sansawa, H. and Yamori, Y., 2004. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br. J. Nutr. 92: 411-417.
48.Hermsnsson, A. M. 1986. Soy proteins gelation. J. Am. Oil. Chem. 63: 658-672.
49.Hesseltine, C. W., Smith, M., Bradle, R. and Djien, K. S. 1963. Investigations of tempeh an Indonesian food. Dev. Ind. Microbiol. (4): 275-287.
50.Hesseltine, C. W. 1965. A millennium of fungi food and fermentation. Mycol. 57: 149-197.
51.Hesseltine, C. W., Smith, M., Wang, H. L., 1967. New fermented cereal products. Devel. Ind. Micro. 8: 179-186.
52.Ibrahim, S. S., Habiba, R. A., Shatta, A. A. and Embaby, H. E. 2002. Effect of soaking, germination, cooking and fermentation on antinutritional factors in cowpeas. Nahrung. 46(2): 92-95.
53.Ikehata, H., Wakaizumi, M. and Murata, K. 1968. Antioxdant and antihemolytic activity of a new isoflavone "Factor 2" isolated from tempeh. J. Agric. Biol. Chem. 32(6): 740-746.
54.Ingram, D., Sanders, K., Kolybaba, M and Lopez, D. 1997. Case-control study of phytoestrogens and breast cancer. Lancet 350: 990-994.
55.Jennessen, J., Nielsen, K. F., Houbraken, J., Lyhne, E. K., Schnurer, J., Frisvad, J. C. and Samson, R. A. 2005. Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. J. Agric. Food Chem. 53: 1833-1840.
56.Jones, D. L., Darrah, P. R., 1994. Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Pla. Soi. 163: 1-12.
57.Kandeler, E., Luxhoi, J., Tscherko, D., Magid, J., 1999. Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soi. Bio. Biochem. 31: 1171-1179.
58.Kerley, S. J., Read, D. J., 1998. The biology of mycorrhiza in the Ericaceae XX. Plant and mycorrhizal necromass as nitrogenous substrates for the ericoid mycorrhizal fungus Hymenscyphus Ericae and its host. New Phytol. 139: 353-360.
59.Kielland, K., 1994. Amino acid absorption by arctic plants: Implications for plant nutrition and nitrogen cycling. Ecol. 75: 2372-2383.
60.Kilara, A. and Sharkasi. T. W 1986. Effect of temperature on food protein and its implications on functional properties. CRC. Crit. Rev. Food Sci. Nutri. 23: 323-395.
61.King, A. and Young, G. 1999. Characteristics and occurrence of phenolic phytochemicals. J. Am. Diet Assoc. 99: 213-218.
62.Ko, S. D. and Hesseltine, C. W. 1979. Tempe and related foods. In: Economic Microbiology, Vol. 4: Microbial Biomass (Ed. A H. Rose), London, Academic Press. pp. 115-140.
63.Kronenberg, H. J. 1984. Reduction of incubation time for tempeh fermentation by use of pregerminated inoculum. Econ. Bot. 38: 433-438.
64.Kruger, J. E. 1973. Change in the levels of proteolytic enzymes from hard red spring wheat during growth and maturation. Cereal Chem. 5: 122-131.
65.Kubicek, C. P., Hampel, W. and Rohr, M. 1979. Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Arch. Microbiol. 123: 73-79.
66.Liener, I. E. 1987. Detoxifying enzyme. In: R. D. King and P. S. J. Cheetham (Eds). Food Biotechnology. Elseyier Applied Science. London. pp.249-271.
67.Litchfield, J. H. 1967. Submerged culture of mushroom mycelium. In: Microbial. Technology (Peppler, H. J., ed), Reinhold, New York, pp. 107-144.
68.Liu, K. 1997. Fermented oriental soyfoods. In: Liu, K. (Ed.), Soybeans: Chemistry, Technology and Utilization, Chapman and Hall, New York, pp. 218-296.
69.Mahmoud, M. I. 1994. Physicochemical and functional properties of protein hydrolysates in nutritional product. Food Techno. 48: 89-95.
70.Medwid, R. D. and Grant, W. 1984. Gremination of Rhizopus oligosporus sporangiospores. Appl. Environ. Microbial. 48(6): 1067-1071.
71.Mital, B. K. and Garg, S. K. 1990. Tempeh-technology and food value. Food Rev. Int. (62): 213-224.
72.Messina, M. J., Persky, V., Setchell, K. D. R. and Barnes, S. 1994. Soybean and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer. 21: 113-131.
73.Messina, M. 1995. Modern uses for an ancient bean: Soy-food and disease. Chem. Ind. 11, 412-415.
74.Messina, M, J. 1999. Legumes and soybeans: Overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 70(3 Suppl): 439S-450S.
75.Nakamura, T., Matsubaysahi, T., Kamachi, K., Hasegawa, T., Ando, Y., Omori, M., 2000. γ -Aminobutyric acid (GABA)-rich chlorella depresses the elevation of blood pressure in spontaneously hypertensive rats (SHR). Nippon Nogeikagaku Kaishi 74: 907-909 (in Japanese).
76.Nanninga, H. J., Drent, W. J. and Gottschal, J. C. 1986. Major differences between glutamate-fermenting species isolated from chemostat enrichments at different diluteion rates. FEMS Microbiol Ecol. 38: 321-329.
77.Näsholm, T., Ekblad, A., Nordin, A., Giesler, R., Hogberg, M., Hogberg, P. 1998. Boreal forest plants take up organic nitrogen. Nature 392: 914-916.
78.Newby, T. J., B. Miller, C. R. Stokes and F. J. Bourne. 1985. Hypersensitivity to dietary antigen as the predisposeing factor in post-weaning diarrhoea. Pig Vet. Sci. Proc. 10: 50-58.
79.Newton, R. J., 1974. Dual uptake pattern of DL-leucine absorption by duckweed root tips. Pla. Cell Physio. 15: 249-254.
80.Nout, M. J. R. and Rombouts, F. M. 1990. Recent developments in Tempe research. J. Appl. Bacteriol. 69: 609-633.
81.Pedersen, H. E. 1995. Application of soya protein concentrated in processed meat products. Fleishwirtsch. 75: 798-802.
82.Peng, I. C., Quass, D. W., Dayton, W. R., and Allen, C. E. 1984. The physicochemical and functional properties of soybean 11S Globulin-a review. Cereal Chem. 61(6): 480-490.
83.Ramarathnam, N., Ochi, H., and Takeuchi, M. 1997. Antioxidative Defense system in vegetable extracts. In: Natural Antioxidants. Editor: Shahidi, F. AOCS Press.
84.Rehms, H. and Barz, W. 1995. Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi. Appl. Microbiol. Biotechnol. 44: 47-52.
85.Rogers, A. H., Gully, N. J., Pfennig, A. L. and Zlim, P. S. 1992. The breakdown and utilization of peptides by strains of Fusobacterium nucleatem. Oral Microbiol. Immunol. 7: 299-303.
86.Santosh, K. and Narayan, S. P. 1997. The metabolism of γ-aminobutyrate(GABA) in fungi. Mycol. Res. 101: 403-409.
87.Sarker, P. K., Jones, L. J., Craven, G. S., Somerset, S. M. and Palmer, C. 1997. Amino acid profiles of kinema, a soybean-fermented food. Food Chem. 59: 69-75.
88.Seker, S., Beyenal, H. and Tanyolac, A. 1999. Modeling milk clotting activeity in the continuous production of microbial rennet from Mucor miehei. J. Food Sci. 64: 525-529.
89.Shizuka, F., Kido, Y., Nakazawa, T., Kitajima, H., Aizawa, C., Kayamura, H. and Ichijo, N. 2004. Antihypertensive effect of γ-aminobutyric acid enriched soy products in spontaneously hypertensive rats. Biofactors 22: 165-167.
90.Stams, A. J. M. and Hansen, T. A. 1984. Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov. sp. Nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate reduceing and methanogenic bacteria. Arch. Microbiol. 137: 329-337.
91.Staswick, P. E., M. A. Hermodson and N. C. Nielsn. 1984. Identification of the cysteine which link the acidic and basic components of the glycinin subunits. J. Biol. Chem. 259: 13431-13436.
92.Steinkraus, K. H., Yap, B. H., Van Buren, J. P., Provvidenti, M. J. and Hand, D. B. 1960. Studies on tempeh-an Indonesian fermented soybean food. Food Res. 25: 777-788.
93.Steinkraus, K. H., van Buren, J. P., Hackler, L. R. and Hand, D. B. 1965. A pilot-plant process for the production of dehydrated tempeh. Food Technol. 19: 63-68.
94.Sternberg, M. J. 1970. Crystalline milk clotting protease from Mucor miehei and some of its propertyes. J. Dairy Sci. 54: 159-167.
95.Tamura, Y. and Takenawa, T. 1999. Antioxidative activeity of water soluble extracts from okara fermented with Bacillus natto and Rhizopus oligosporus. Nippon Shokuhin Kogyo Gakaishi. 46: 561-569.
96.Tsuji, K., Ichikawa, T., Tanabe, N., Abe, S., Tarui, S., Nakagawa, Y., 1992. Antihypertensive activities of beni-koji extracts and γ-aminobutyric acid in spontaneously hypertensive rats. Eiyogaku Zasshi 50: 285-291 (in Japanese).
97.Turhan, M. and Mutlu, M. 1998. Kinetics of κ-casein/immobileized chymosin hydrolysis. Enzyme Microb. Tech. 22: 342-347.
98.Usmani, N. F. and Noorani, R. 1986. Studies on soybean tempeh. II. Propagation and preservation of Rhizopus oligosporus spores for commercial production of tempeh from soybean. J. Sci. Ind. Res. 29: 148-150.
99.Valeria Rossetti and Anna Lombard. 1996. Determination of glutamate decarboxylase by high-performance liquid chromatography. Chromato. B. 681: 63-67.
100.Vanharanta, M., Voutilainen, S., Lakka, T. A., van der Lee, M., Adlercreutz, H. and Salonen, J. T. 1999. Reduced risk of acute coronary events at high levels of mammalian lignan, enterolactone: A prospective population-based cohort study. Lancet 354: 2112-2115.
101.Vioque, M., Gomez, R., Sanchez, E., Mata, C. Tejada, L. and FernandezSalguero, J. 2000. Chemical and microbiological characteristics of ewe’s milk cheese manufactured with extracts from flowers of Cynara cardunculus and Cynara humilis as coagulants. J. Agric. Food Chem. 48: 451-456.
102.Wadud, S., Kosar, S., Ara, H. and Durrani, H. 1988. A process for the pilot plant production of tempeh. Pakstan J. Sci. Res. 31: 435-438.
103.Wang, H. and Murphy, P. A. 1994a. Isoflavone compositeon of American and Japanese soybeans in lowa: effects of variety, crop year and locateon. J. Agr. Food Chem. 42: 1674-1677.
104.Wang, H. and Murphy, P. A. 1994b. Isoflavone content in commercial soybean foods. J. Agr. Food Chem. 42: 1666-1673.
105.Wang, H. L., Ruttle, D. I., and Hesseltine, C. W. 1969. Milk-clotting activeity of proteinases produced by Rhizopus. Can. J. Microbiol. 15: 99-104.
106.Watson, R., Fowden, L., 1975. The uptake of phenylalanine and tyrosine by seeding root tips. Phytochem. 15: 249-254.
107.Whiteley, H. R. 1957. Fermentation of amino acid by Micrococcus aerogenes. J. Bacteriol. 74: 324-330.
108.Wolf, W. J. 1970. Soy protein: Their functional, chemical, and physical properties. J. Agric. Food Chem. 18: 969-976.
109.Wuryani, W. 1995. Isoflavones in tempe. Asean. Food J. 10: 99-102.
110.Yagasaki, K., T. Toshio, S. Miyo and K. Keisuke. 1997. Biochemical characterization of soybean protein consisting of different subunits of glycinin. J. Agric. Food Chem. 45: 656-660.
111.Ziegler, G. R. and E. A. Foegeding. 1990. The gelation of proteins. Adv. Food Nutr. Res. 34: 203-298.
112.Zindel, U., Freudenberg, W., Rieth, M. Andreeseen, J. R., Schnell, J. and Widdel, F. 1988. Eubacterium acidaminophilum sp. Nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymeatic studies. Arch. Microbiol. 150: 254-266.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top