跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃建彰
研究生(外文):huang chien chang
論文名稱:具開放式陰極之質子交換膜燃料電池之最佳化研究
論文名稱(外文):A Study on the Optimization of a PEM Fuel Cell with Open Cathodes
指導教授:鄭錕燦
指導教授(外文):jeng kuen tsan
學位類別:碩士
校院名稱:大葉大學
系所名稱:車輛工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:58
中文關鍵詞:質子交換膜燃料電池數值模擬
外文關鍵詞:PEMfuel cellNumerical simulation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
以直流風扇送風的開放式陰極質子交換膜燃料電池,利用風扇推送空氣,使之貫穿陰極流道,此空氣則兼具『反應氣體』與『冷卻流體』的雙重功能。此種型式的燃料電池系統,具有構造簡單、體積小、重量輕等優點,因此諸如電動輪椅、電動代步車、電動自行車等小型運輸工具,很適合以它做為電力來源。
具有開放式陰極的質子交換膜燃料電池,除了它所使用的膜電極組(MEA)的優劣將左右其性能之外,雙極板中陰極的空氣流道和流速之設計,對電池堆的操作溫度以及整體性能亦有關鍵性的影響。
本論文針對這種型式的燃料電池堆進行研究,利用COMSOL數值分析軟體模擬的方法深入探討質子交換膜燃料電池的陰極,在各種不同的流道設計與空氣流速下之電池性能以及燃料電池內部之溫度變化情形。
In a PEM fuel cell stack with open cathodes air is forced to go through its cathode sides by an axial-fan, in which the air has a two-fold effect----being both a reactant gas and a coolant. This type of fuel cell system has a lot of merits, such as simple structure, compactness, and light-weight. So, they can be used as the power sources of small vehicles, such as electric wheel-chairs, scooters, and bikes.
For a PEM fuel cell stack with open cathodes, the performance of the fuel cell depends on the quality of its membrane electrode assembly. Furthermore, the air channel size and air flow speed on the cathode side have substantial effect on the temperature and performance of the stack.
The present thesis focuses on this type of fuel cell stack. The temperature distribution and performance of the fuel cell under various channel designs and air flow speeds were investigated by numerical simulations using the commercial code COMSOL MULTIPHYSICS.
封面內頁
簽名頁
博碩士論文暨電子檔案上網授權書 iii
中文摘要 iv
ABSTRACT v
誌謝 vi
目錄 vii
圖目錄 x
符號說明 xiii

第一章 緒論 1
1.1前言 1
1.2燃料電池的介紹 2
1.2.1燃料電池的原理 2
1.2.2燃料電池的構造 4
1.2.3燃料電池的優點 7
1.2.4燃料電池主要技術問題 9
1.2.5燃料電池的性能曲線 9
1.3文獻回顧 12
1.4研究動機及目的 16
第二章 研究方法 18
2.1 COMSOL工程分析軟體簡介 18
2.2有限元素法 19
2.3數值模擬流程 20
2.4模型說明 21
2.4.1氣體擴散層中之質傳模型 21
2.4.2速度場、溫度場與濃度場之計算模型 23
2.5基本假設 25
2.6統御方程式 25
2.6.1氣體擴散層質傳之統御方程式 26
2.6.2速度分佈之統御方程式 27
2.6.3溫度分佈之統御方程式 27
2.6.4反應物之濃度分佈之統御方程式 28
2.7邊界條件 29
2.7.1氣體擴散層質傳之邊界條件 29
2.7.2速度分佈之邊界條件 29
2.7.3溫度分佈之邊界條件 30
2.7.4反應物濃度分佈之邊界條件 31
2.8格點分佈 33
第三章 結果與討論 36
3.1有效擴散係數之經驗方程式驗證 36
3.1.1氣體在擴散層內擴散的情形 36
3.1.2彎曲係數之驗證 38
3.2燃料電池溫度分佈 39
3.3反應物濃度分佈 42
3.3.1氧氣質量分率在擴散層至流道間的分佈情形 42
3.3.2水氣質量分率在擴散層至流道間的分佈情形 45
3.3.3不同入口流速對於氧氣、水氣質量分率及壓力變化的影響 47
3.4燃料電池性能曲線 49
第四章 結論及建議與未來研究方向 53
4.1結論 53
4.2建議與未來研究方向 54
參考文獻 55
[1]蔡克群, “燃料電池導論”,化工技術, 111期, 122-131 (2002)
[2]T. Suzuki, H. Murata, T. Hatanaka, Y. Morimoto, “Analysis of the Catalyst Layer of Polymer Electrolyte Fuel Cells”,R&D Review of Toyota CRDL, 39 ,33-38 (2000).
[3]D. M. Bernardi, M. W. Verbrugge, “Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte”, AICHE Journal, 37, 1151-1163 (1991).
[4]A. C. West, T. F. Fuller, “Influence of rib spacing in proton exchange membrane electrode assemblies”, Journal of the Applied Electrochemistry, 26, 557-565 (1996).
[5]M. Eikerling, A. A. Kornyshev, “Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells.”, Journal of Electroanalytical Chemistry, 453, 89-106 (1998).
[6]V. Gurau, H. Liu, and S. Kakac, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells”, AICHE Journal, 44, 2410-2422 (1998)
[7]C. Boyer, S. Gamburzev, O. Velev, S. Srinivasan and A. J. Appleby, “Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes”,Electrochimica Acta , 43, 3703-3709 (1998).
[8]S. Dutta, S. Shimpalee and J. W. Zee, “Three-dimensional numerical simulation of straight channel PEM fuel cells”,Journal of Applied Electrochemistry, 30, 135-146 (2000).
[9]K. Dannenberg, P. Ekdunge, G. Lindbergh, “Mathematical Model of the PEMFC”, Journal of Applied Electrochemistry, 30 1377-1387 (2000).
[10]W. M. Yan, C. Y. Soong, F. Chen, H. S. Chu, “Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells”, Journal of Power Sources ,125, 27–39 (2004).
[11]G. Hu, J. Fan, S. Chen, Y. Liu, K. Cen, “Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields” , Journal of Power Sources , 136, 1–9 (2004).
[12]G. H. Guvelioglu, H. G. Stenger,“Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells”, Journal of Power Sources, 147, 95–106 (2005).
[13]W. Ying, Y. J. Sohn, W. Y. Lee, J. Ke, C. S. Kim, “Three-dimensional modeling and experimental investigation for an air-breathing polymer electrolyte membrane fuel cell (PEMFC)”, Journal of Power Sources, 145, 563–571 (2005).
[14]T. J. Marshall, “The diffusion of gases through porous media”, Journal of Soil Science, 10, 79-82 (1959).
[15]P. Moldrup, T. Olesen, J. Gamst, P. Schjønning, T. Yamaguchi, and D. E. Rolston, “Predicting the Gas Diffusion Coefficient in Repacked Soil: Water-Induced Linear Reduction Model”, Soil Sci. Soc. Am. J., 64, 1588-1594 (2000).
[16]S. H. Ge, B. L. Yi, “A mathematical model for PEMFC in different flow modes”, Journal of Power Sources ,124 , 1–11 (2003).
[17]W. Sun, B. A. Peppley, K. Karan, “Modeling the influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer”, Journal of Power Sources, 144, 42-53 (2005).
[18]B. Cheng, O. Minggao, Y. Baolian, “Analysis of Water Management in Proton Exchange Membrane Fuel Cells”, TSINGHUA SCIENCE AND TECHNOLOGY, 11, 54-64 (2006).
[19]M. F. Serincan, and S. Yesilyurt, “Transient Analysis of Proton Electrolyte Membrane Fuel Cells (PEMFC) at Start-Up and Failure s”,Fuel cells, 0, 1-10 (2005).
[20]S. Mazumder, J.V. Cole, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells II. Model Predictions with Liquid Water Transport” , J. Electrochem. Soc., 150, 1510-1517 (2003).
[21]M. Grujicic, K. M. Chittajallu, “Design and optimization of polymer electrolyte membrane (PEM) fuel cells”, Applied Surface Science, 227, 56–72 (2004).
[22]M. Grujicic, K. M. Chittajallu, “Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells”, Chemical Engineering Science , 59, 5883 -5895 (2004).
[23]Y. Shan, S. Y. Choe, “A high dynamic PEM fuel cell model with temperature effects”, Journal of Power Sources ,145, 30–39 (2005).
[24]L. Matamoros, D. Bruggemann, “Simulation of the water and heat management in proton exchange membrane fuel cells”, Journal of Power Sources ,161,203-213 (2006).
[25]N. Djilali, “Computational modeling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities”, Energy, 32, 269-280 (2007).
[26]黃鎮江, “燃料電池”,全華科技圖書股份有限公司, 2003.
[27]依寶廉, “燃料電池-原理與應用”,五南圖書出版股份有限公司, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top