跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯博文
研究生(外文):Po-Wen Ko
論文名稱:應用計劃評核術在資源限制下的排程與風險評估架構
論文名稱(外文):A Framework of Evaluating the Risk and PERT Scheduling with Resource Constraints
指導教授:曾清枝曾清枝引用關係
指導教授(外文):Ching-Chih Tseng
學位類別:碩士
校院名稱:大葉大學
系所名稱:事業經營研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:73
中文關鍵詞:專案排程資源限制隨機工期風險評估
外文關鍵詞:project schedulingrecourse constraintstochastic durationrisk evaluation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
資源限制專案排程問題是專案管理的熱門研究議題,然而其中較符合實務狀況採隨機工期的研究卻相對稀少。此類研究受限於NP-hard problem的限制,多採啟發法(heuristics)進行求解,因此受限於啟發法本身的缺陷,且未針對不確定性造成的風險加以考量,結果也多僅以期望專案工期呈現,未能提供更多的排程資訊。因此本研究建立以情境為基礎(scenario-based)的專案排程與風險評估架構,嘗試改善上述問題。首先採用蒙地卡羅模擬法(Monte Carlo simulation),模擬出在預定組數之不同作業工期,根據質性模擬圖型法(Qualitative Simulation Graph Methodology)建立在資源限制下各種可行排程(feasible schedule),採事件圖形(event graph)來建立作業的邏輯關係將可行排程轉換為對應作業路徑(activity path,或稱之PERT-path)。階段二,根據EU-E(expected utility-entropy)決策模型對所有可行排程依據決策者客觀風險及主觀效用函數,計算出不同偏好組合所對應最佳路徑之客觀風險值及主觀效用值。本文最後以實例說明,此架構可建構依據決策目標發展的樹狀排程圖,並評估出專案風險值、最可能依循的完成路徑,以提供專案規劃者更多的資訊制定排程決策與控制計畫。
Most of the works on resource-constrained project scheduling problems(RCPSP) attempt to simplify the problem complexity by assuming that the duration of activity is fixed. This assumption leads to the result that the preciseness of the project schedule planning is dramatically reduced. In the real project life activity duration is a random variable with given density function. To investigate all possible resulting scenarios of schedule and their corresponding risks caused by the scheduling policy and the duration uncertainty, a scenario-based framework for project scheduling and risk evaluating is proposed. The framework consists of two phases: the first stage is to use Monte Carlo simulation to generate a predetermined number of sets of different activity durations. For each set, adopting QSGM(Qualitative Simulation Graph Methodology) to build all possibly feasible schedules, each of the feasible schedules is transformed to activity path, also called PERT-path, by EG(event graph) method. The all possible paths are generated by two folds: decision fork caused by different decision making and chance fork brought by uncertain activity duration. These possible paths and the possible forks construct a decision tree during project evolution. In the next stage a decision-making model based on expected utility and entropy(EU-E) is proposed. The EU-E is a measure of risk and can reflect an individual’s institute attitude toward risk. Based on project manager’s different preference toward risk, the corresponding optimal activity path of project progress can be found.
中文摘要 ..................... iii
英文摘要 ..................... iv
誌謝辭  ..................... v
內容目錄 ..................... vi
表目錄  ..................... viii
圖目錄  ..................... ix
第一章  緒論................... 1
  第一節  研究背景............... 1
  第二節  研究動機............... 3
  第三節  研究目的............... 3
  第四節  研究流程............... 4
第二章  文獻探討................. 5
  第一節  專案網路圖.............. 5
  第二節   RCPSP的發展 ......... 7
  第三節  作業工期隨機型的 RCPSP ....... 11
  第四節  作業工期隨機型的排程分析....... 14
  第五節  小結................. 16
第三章  專案排程與分析架構............ 18
  第一節  研究架構............... 18
  第二節  模擬分析流程............. 20
  第三節  決策函數之建立............ 29
第四章  架構之運用結果與分析........... 33
  第一節  排程結果的呈現與比較......... 33
  第二節  期望工期最小之排程結果........ 34
  第三節  採用決策函數之排程結果........ 40
第五章  研究結論與建議.............. 42
  第一節  研究結論............... 42
  第二節  研究建議與未來研究方向........ 43
參考文獻 ..................... 46
附錄A   事件圖形表示法.............. 52
附錄B   事件圖形邏輯關係模型 .......... 58
附錄C   Beta分布相關公式............. 64
Abeyasinghe, M. C. L., Greenwood, D. J., & Johansen, D. E. (2001). An efficient method for scheduling construction projects with resource constraints. International Journal of Project Management, 19(17), 29-45.
Akpan, E. O. P. (2000). Priority rules in project scheduling: a case for random activity selection. Production Planning & Control, 11(2), 165-170.
Alcaraz, J., & Maroto, C. (2001). A robust genetic algorithm for resource allocation in project scheduling. Annals of Operations Research, 102, 83-109.
Böttcher, J., Drexl, A., Kolisch, R., & Salewski, F. (1999). Project scheduling under partially renewable resource constraints. Management Science, 45(4), 543-559.
Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research, 149, 268-281.
Bushuyev, S. D., & Sochnev, S. V. (1999). Entropy measurement as a project control tool. International Journal of Project Management, 17(6), 343-350.
Demeulemeester, E., & Herroelen, W. (1992). A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Management Science, 38, 1803-1818.
Demeulemeester, E., & Herroelen, W. (1997). New benchmark results for the resource-constrained project scheduling problem. Management Science, 43, 1485-1492.
Fernandez, A. A., Armacost, R. L., & Pet-Edwards, J. J. A. (1996). The role of the nonanticipativity constraint in commercial software for stochastic project scheduling. Computers and Industrial Engineering, 31(1/2), 233-236.
Fernandez, A. A., Armacost, R. L., & Pet-Edwards, J. J. A. (1998). Understanding simulation solution to resource constrained project scheduling problems with stochastic task durations. Engineering Management Journal, 10(5), 5-13.
Fleszar, K., & Hindi, K. S. (2004). Solving the resource-constrained project scheduling problem by a variable neighbourhood search. European Journal of Operational Research, 155(2), 402-413.
Golenko-Ginzburg, D., & Gonil, A. (1997). Stochastic network project scheduling with non-consumable limited resources. Internat- ional Journal of Production Economics, 48, 29-37.
Hartmann, S. (1998). A competitive genetic algorithm for the resource-constrained project scheduling. Naval Research Logistics, 45, 733-750.
Hartmann, S., & Kolosch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 127, 394-407.
Hartmann, S. (2002). A self-adaptive genetic algorithm for project scheduling under resource constraints. Naval Research Logistics, 49, 433-448.
Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: a review and classification of procedures. Interna- tional Journal of Production Research, 42(8), 1599-1620.
Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165, 289-306.
Igelmund, G., & Radermacher, F. J. (1983). Preselective strategies for the optimization of stochastic project networks under resource constraints. Networks, 13, 1-28.
Ingalls, R. G., & Morrice, D. J. (2004). PERT Scheduling with resource constraints using qualitative simulation graphs. Project Management Journal, 35(3), 5-14.
Kolosch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174, 23-37.
Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for resource constrained project scheduling. IEEE Transactions on Evolutionary Computation, 6, 333-346.
Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Management Science, 44, 715-729.
Möhring, R. H., & Stork, F. (2000). Linear preselective policies for stochastic project scheduling. Mathematical Methods of Operations Research, 52, 501-515.
Mori, M., & Tseng, C. C. (1997). A genetic algorithm for multi-mode resource constrained project scheduling problem. European Journal of Operational Research, 100, 134-141.
Mummolo, G. (1994). PERT-path network technique: a new approach to project planning. International Journal of Project Manage- ment, 12(2), 89-99.
Mummolo, G. (1997). Measuring uncertainty and criticality in net- work planning by PERT-path technique. International Journal of Project Management, 15(6), 377-387.
Nonobe, K., & Ibaraki, T. (2002). Formulation and tabu search algorithm for the resource constrained project scheduling problem (RCPSP). In C.C. Ribeiro & P. Hansen (Eds.), Essays and Surveys in Metaheuristics (Kluwer Academic Publishers, Boston, pp. 557-588).
Pet-Edwards, J., & Mollaghesemi, M. (1996, June 25-27). A simulation and genetic algorithm approach to stochastic resource-constrained project scheduling., Southcon/96. Conference Record (pp. 333-338), Orlando, FL, USA.
Pontrandolfo, P. (2000). Project duration in stochastic net works by PERT-path technique. International Journal of Project Management, 18, 215-222.
Pritsker, A. A. B., Watters, L. J., & Wolfe, P. M. (1969). A zero-one programming approach. Management Science, 16, 93-108.
Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest memory requirements. Management Science, 46, 710-723.
Stork, F. (2000). Branch-and-bound algorithms for stochastic resource-constrained project scheduling (Research Report No. 702/2000). Berlin: Technische University.
Stork, F. (2001). Stochastic resource-constrained project scheduling. Unpublished doctoral dissertation, Technische University, Berlin.
Tsai, Y. W., & Gemmill, D. D. (1998). Using tabu search to schedule activities of stochastic resource-constrained projects. European Journal of Operational Research, 111, 129-141.
Yang, J., & Qiu, W. (2005). A measure of risk and a decision-making model based on expected utility and entropy. European Journal of Operational Research, 164, 792-799.
Valls, V., Quintanilla, S., & Ballestin, F. (2003). Resource-constrained project scheduling: A critical activity reordering heuristic. European Journal of Operational Research, 149, 282-301.
Van Slyke, R. M. (1963). Monte Carlo methods and the PERT problem. Operations Research, 11(5), 839-860.
Wiest, J. D. (1963). Some properties of schedules for large projects with limited resources. Operations Research 12, 395-418.
Wiest, J. D. (1967). A heuristic model for scheduling large projects with limited resources. Management Science, 13, B359-B377.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王淑芬(1997),婦女與公共空間--公車上的性騷擾,性別與空間研究室通訊,4,276-281。
2. 王淑芬(1997),婦女與公共空間--公車上的性騷擾,性別與空間研究室通訊,4,276-281。
3. 王淑芬(1997),婦女與公共空間--公車上的性騷擾,性別與空間研究室通訊,4,276-281。
4. 王純娟(1998),從美國的性騷擾定義談起—為台灣社會尋找一個性騷擾定義,輔導季刊,34(3),22-32
5. 王純娟(1998),從美國的性騷擾定義談起—為台灣社會尋找一個性騷擾定義,輔導季刊,34(3),22-32
6. 王純娟(1998),從美國的性騷擾定義談起—為台灣社會尋找一個性騷擾定義,輔導季刊,34(3),22-32
7. 呂寶靜(1995),工作場所性騷擾之探討:台灣地區案例探討,國立政治大學學報,70(下),131-159。
8. 呂寶靜(1995),工作場所性騷擾之探討:台灣地區案例探討,國立政治大學學報,70(下),131-159。
9. 呂寶靜(1995),工作場所性騷擾之探討:台灣地區案例探討,國立政治大學學報,70(下),131-159。
10. 吳玉釵(1996),國小學童性騷擾經驗之探討,訓育研究,35(2),33-41。
11. 吳玉釵(1996),國小學童性騷擾經驗之探討,訓育研究,35(2),33-41。
12. 吳玉釵(1996),國小學童性騷擾經驗之探討,訓育研究,35(2),33-41。
13. 俞慧君(2002),各國對工作場所性騷擾之法律規範,法學叢刊,47(2),79-105。
14. 俞慧君(2002),各國對工作場所性騷擾之法律規範,法學叢刊,47(2),79-105。
15. 俞慧君(2002),各國對工作場所性騷擾之法律規範,法學叢刊,47(2),79-105。