跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳泰儒
研究生(外文):Tai-Ju Chen
論文名稱:雙頻帶操作印刷天線的小型化研究
論文名稱(外文):Studies on Dual-Band Printed Antennas with Compact Size
指導教授:胡大湘胡大湘引用關係
指導教授(外文):Ta-Hsiang Hu
學位類別:碩士
校院名稱:大葉大學
系所名稱:電信工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:51
中文關鍵詞: 印刷槽孔天線 雙頻 縮小化
外文關鍵詞:printed slot antennasdual-frequency operationscompact
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本文中,我們提出以弧狀饋入結構雙頻操作印刷槽孔天線設計,此天線設計主要結構特徵是在圓環型槽孔中植入一蜿蜒金屬微帶搭配弧狀饋入結構方式,使其激發三個共振頻帶而第一個頻帶低於未加入設計結構之參考天線的第一個共振頻帶,而所提出天線設計也可縮小尺寸為傳統圓環形印刷槽孔天線(參考天線)的0.53倍。同時在中央金屬微片底部植入一對凹槽(Notch)也可使後二個激發模態的共振頻帶相互靠近而結合為一較寬的操作頻帶。
This thesis types of ARC feed for dual-band printed-slot antenna construction designs.By embedding a meander grounded strip into the slot of an annular-ring slot antenna with arc fed, three resonant modes with different electric current distributions in the slot region are excited at distinct frequency bands. The first resonant-band center frequency was much lowered from that of a conventional microstripline-fed annular-ring slot antenna because the routes of the equivalent magnetic current distributions in the slot region were lengthened by the embedded strip.
目錄

封面內頁
簽名頁
授權書.........................iii
中文摘要........................iv
英文摘要........................v
誌謝..........................vi
目錄..........................vii
圖目錄.........................ix
表目錄.........................x

第一章 緒論
1.1 前言.................... 1
1.2 研究動機.................. 4
1.3 內容提要.................. 5
第二章 槽孔天線文獻回顧
2.1 概述.................... 6
2.2雙頻帶操作印刷槽孔天線文獻回顧........ 7
第三章 小型化雙頻帶操作圓環形印刷槽孔弧狀饋入天線設計
3.1 概述.................... 12
3.2 天線結構.................. 14
3.3 天線返回損失特性的實驗結果與討論...... 17
3.4小型化雙頻帶操作圓環形印刷槽孔弧狀饋入天線輻射特性實驗與結果探討.............32
3.5本章討論.................. 33
第四章 結論......................37
參考文獻........................38




圖目錄

圖 3.1 小型化雙頻帶操作圓環形印刷槽孔天線弧狀饋入結構. 16
圖 3.2小型化雙頻帶操作圓環形印刷槽孔弧狀饋入天線,探討蜿蜒接地金屬微帶延展角度α參數於量測所得之返回損失頻率響應圖。.................... 26
圖 3.3小型化雙頻帶操作圓環形印刷槽孔弧狀饋入天線,探討在圓環形槽孔中央僅數為片底部植入凹槽深度於量測所得之返回損失頻率響應圖。............... 27
圖3.4 小型化雙頻帶操作圓環形印刷槽孔弧狀饋入天線實際製作後於量測所得之返回損失頻率響應圖......... 28
圖3.5 以Ansoft HFSS模擬軟體模擬所提出天線設計Antenna 2天線在金屬表面上的電流分佈示意圖:(a)第一個激發模態;(b)第二個激發模態;(c)第三個激發模態..... 29
圖3.6 小型化雙頻帶操作圓環形印刷槽孔弧狀饋入天線設計中的Antenna 7於量測所得之三個激發模態共振頻率的輻射場型圖:(a)f=2400MHz;(b)f=4900MHz;(c)f=5750MHz...................34
圖3.7 小型化雙頻帶操作圓環形印刷槽孔弧狀饋入天線量測Antenna 7所得操作頻寬內的最大天線增益圖.....36


表目錄

表1.1 無線網路規範頻帶..........................3
表2.1(a)雙頻帶操作印刷槽孔天線文獻以分離的槽線產生不同激發 頻帶的設計分類................. 8
表2.1(b)雙頻帶操作印刷槽孔天線文獻以分離的槽線產生不同激發頻帶的設計分類................. 9
表2.2 雙頻帶操作印刷槽孔天線文獻以饋入結構的設計產生不同的激發頻帶設計分類.................. 10
表2.3雙頻帶操作印刷槽孔天線文獻以植入金屬微帶於槽孔中產生不同激發頻帶設計分類...............11
表3.1小型化雙頻帶操作圓環形印刷槽孔弧狀饋入天線探討蜿蜒接地金屬微帶延展角度α參數;當R1 = 10.5mm、R2 =8.5 mm、Wf = 1.3 mm、r = 4.4、h = 0.7 mm、G=30mm正切損耗常數 = 0.02、時於實際製作後量測所得返損失頻率響應特性,阻抗頻寬(BW)由駐波比VSWR = 2的兩頻率(fL、fH) 計算.......................17
表3.2探討於中央金屬微片底部與蜿蜒金屬微帶連接處植入一對長寬分別為ln 以及Wn的凹槽(Notch),實做在α=156°時量測所得返回損失頻率響應特性:R1 = 10.5mm、R2 =8.5 mm、Wf = 1.3 mm、r = 4.4、h = 0.7 mm、G=30mm正切損耗常數 = 0.02;fc1為第一個激發模態的共振頻率;fc3為第三個激發模態的共振頻率;fc3/ fc1為兩激發模態的共振頻率比;兩阻抗頻寬(BW)由駐波比VSWR = 2的兩頻率(fL、fH) 計算......................19
表3.3小型化雙頻帶操作圓環形印刷槽孔弧狀饋入天線當R1 = 10.5mm、R2 =8.5 mm、Wf = 1.3 mm、r = 4.4、h = 0.7 mm、G=30mm正切損耗常數 = 0.02、時於實際製作後量測所得返損失頻率響應特性,阻抗頻寬(BW)由駐波比VSWR = 2的兩頻率(fL、fH) 計算。..............20
[1] 柯正學,“應用於無線區域網路之低剖面槽孔天線研究設計,”國防大學中正理工學院電子工程研究所,2003.
[2] 許勝欽,“雙頻操作印刷天線小型化之研究,”大葉大學電信研究所,2006.
[3]IEEE Standard 802.11, “Information Technology- telecommunications And Information exchange Between Systems- Local And Metropolitan Area Networks-specific Requirements -part 11: Wireless Lan Medium Access Control (MAC) And Physical Layer (PHY) Specifications,”Nov. 1997.
[4]IEEE Standard 802.11a,“Information Technology telecommunications and information exchange between systems-Local and metropolitan area networks - specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5 GHz Band,”1999.
[5]IEEE Standard 802.11b, “Information Technology- Telecommunications And Information Exchange Between Systems-Local And Metropolitan Area Networks- Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications: Higher-speed Physical Layer Extension In The 2.4 GHz Band,”1999.
[6]ETSI Standard TS 101 475,“Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical (PHY) layer,”Apr. 2000.
[7]IEEE Standard 802.11g,“Information Technology- telecommunications and information exchange between systems-local and metropolitan area networks- specific requirements Part II: wireless LAN medium access control (MAC) and physical layer (PHY) specifications; Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band,”2003.
[8]IEEE Standard 802.15.1, “Information Technology- Telecommunications and information exchange between systems-Local and metropolitan area networks- Specific requirements Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs),”2002.
[9]IEEE Standard 802.15.4, “Information Technology- Telecommunications and information exchange between systems-local and metropolitan area networks specific requirements part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs),”2003.
[10] Lin, S. Y. and Wong, K. L., “A Dual-Frequency Microstrip-Line-Fed Printed Slot Antenna,” Microwave Opt. Technol. Lett., Vol. 28, pp. 373-375, July, 2001.
[11] Chen, J. S., “Multi-Frequency Characteristics of Annular-Ring Slot Antennas,” Microwave Opt. Technol. Lett., Vol. 38, pp. 506-511, Sep., 2003.
[12] Liu, J. C., Zeng, B. H., Wu, C. Y., and Chang, D. C., “Double-Ring Slot Antenna with Tree-Shaped Coupling Strip for WLAN 2.4/5-GHz Dual-Band Applications,” Microwave Opt. Technol. Lett., Vol. 47, pp. 374-379, Nov., 2005.
[13] P. Rakluea, and N. Ananttrasirichai , “A Double-Band Right Angle Microstrip Slot Antenna ,” IEEE Opt. Technol. Lett., Vol. 47, pp. 374-379, Nov., 2006.
[14] J. Tao, C. H. Cheng, and H. B. Zhu ,“ Compact Dual-Band Slot Antenna for WLAN Applications,” Microwave Opt. Technol. Lett.,/ Vol. 49, No. 5, May 2007.
[15] Hooman Tehrani, Member, IEEE, and Kai Chang, Fellow, IEEE,“ Multifrequency Operation of Microstrip-Fed Slot-Ring Antennas on Thin Low-Dielectric Permittivity Substrates,” IEEE Trans. Antennas propagat. vol. 50, NO. 9, september 2002
[16] Yong-Woong Jang, “A Circular Microstrip-Fed Single-Layer Single-Slot Antenna for Multi-Band Mobil Communications,” Microwave Opt. Technol. Lett.,Vol. 37, No. 1, April 5 2003.
[17] JoongHan Yoon, Gyey Teak Jeong, and Kyung Sup Kwak,“ Fabrication and Measurement of Triangular-Slot Antenna for Triple-Band (2.4/5.2/5.8 GHz) Antenna with Rectangular Tuning Stub,” Microwave Opt. Technol. Lett., Vol. 49, No. 8, August 2007
[18] Jeun-Wen Wu ,“2.4/5-GHz Dual-Band Triangular Slot Antenna with Compact Operation,” Microwave Opt. Technol. Lett., / Vol. 45, No. 1, April 5 2005
[19] Hai-Ming Hsiao, Jeun-Wen Wu, Yau-Der Wang, Jui-Han Lu, and
Shun-Hsyung, “ Chang Novel Dual-Broadband Rectangular-Slot Antenna for 2.4/5-GHZ Wireless Communication,” Microwave Opt. Technol. Lett., / Vol. 46, No. 3, August 5 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top