跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 20:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫志仁
研究生(外文):Chih-Jen Sun
論文名稱:跳時PAM超寬頻多入多出系統的多用戶檢測和盲蔽式通道估計技術
論文名稱(外文):Multiuser Detection And Blind Channel Estimation for Time-Hopping PAM UWB MIMO Systems
指導教授:武維疆武維疆引用關係
指導教授(外文):Wei-Chiang Wu
學位類別:碩士
校院名稱:大葉大學
系所名稱:電信工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:57
中文關鍵詞:跳時超寬頻線性多用戶檢測多用戶存取干擾盲蔽式信號接收強制歸零
外文關鍵詞:Ultra-wideband(UWB)Time-hopping(TH)Linear multiuser detector(LMD)multi-access interference(MAI)Blind estimationzero-forcing(ZF)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文架構於跳時(time-hopping)脈波振福調變(PAM)之超寬頻(UWB)脈波無線電(IR)通訊系統,主要分成多用戶檢測及盲蔽式信號接收兩部分。本文提出數種線性多用戶檢測器,在頻率選擇性衰減通道,對多用戶存取干擾(MAI)進行有效抑制,順利的擷取出目標資訊位元。而後我們使用了三種行動台(MS)接收機。其中一種是匹配濾波器接收機(matched filter, MF),另一種則是為了最小化輸出功率(minimum output energy, MOE)接收機以及強制歸零(zero forcing, ZF)接收機。然而這兩種接收機均須仰賴精確的通道估計,因此我們便推演出了一種盲蔽式(blind)的通道估計法則,同時針對幾個可能有關因子,分析通道估計準確度的相對影響。而由驗證分析的部分可發現,強制歸零接收機不僅改善了遠近(near-far)效應、多用戶存取干擾問題,同時對於系統效能亦有所增益。
This thesis is based on time-hopping (TH) pulse amplitude modulation (PAM) in Ultra-Wideband (UWB) impulse radio (IR) communication system, and mainly divides into two parts:multiuser detection and blind interference suppression. We apply a class of linear multiuser detectors (LMDs) to extract the information bits while suppress multi-access interference (MAI) even in the presence of multipath fading. Morever, we develop three types of mobile station (MS) receivers. One is matched-filter (MF) receiver and minimum output energy (MOE) receiver as well as zero-forcing (ZF) receiver. However, since accurate channel information is crucial for reliable operation, thereby we propose a blind (non-data aided) channel estimator. The numerical and analytical results demonstrate that zero-forcing (ZF) receiver not only multi-access interference and near-far problem can be suppressed effectively but also system performance is comprehensively improved.
封面內頁
簽名頁
授權書.....................iii
中文摘要.....................iv
英文摘要.....................v
誌謝.....................vi
目錄.....................vii
圖目錄.....................ix
表目錄.....................x

第一章 緒論.....................1
1.1研究動機.....................1
1.2研究方法.....................2
1.3內容大綱.....................2
第二章 UWB通訊系統.....................3
2.1 UWB之定義.....................3
2.2 UWB IR通訊系統特性.....................7
2.3 UWB的應用.....................11
2.4脈波調變.....................13
2.4.1脈波波形.....................14
2.4.2 Time-Hopping PAM調變方式...............................14
2.5多重路徑.....................17
第三章 利用TH-PAM UWB MIMO之線性多用戶接收器及盲蔽式MIMO通道估計演算法.....................18
3.1信號模型.....................18
3.2線性多用戶接收器.....................25
3.3 Matched-filter receiver.....................27
3.4 Zero-forcing detector.....................28
3.5 Minimum-output-energy receiver.....................29
3.6基於子空間的盲蔽式MIMO通道估計演算法.....................33
3.7實際情況.....................37
3.7.1 Matched-filter receiver之實際情形.....................37
3.7.2 Zero-forcing detector之實際情形.....................38
3.7.3 Minimum-output-energy receiver之實際情形.....................39
第四章 數值分析與效能評估 .....................41
4.1理想情況下之接收機分析.....................42
4.2通道估計之準確度分析.....................45
4.3實際狀況下之接收機分析.....................48
第五章 結論.....................52
參考文獻.....................54






圖目錄

圖2.1功率訊號頻譜圖.....................3
圖2.2 UWB與傳統的窄頻訊號、寬頻訊號之比較.....................5
圖2.3 UWB與現有無線通訊系統之公用頻帶示意圖.....................5
圖2.4 UWB應用範圍 .....................11
圖2.5 PPM與PAM之調變差異.....................13
圖2.6在單一使用者下之TH-BPAM脈衝的例子.....................16
圖2.7在單一使用者下之TH-BPPM脈衝的例子.....................16
圖2.8多重路徑圖.....................17
圖3.1在上鏈的TH UWB通訊系統的MIMO通道模型.....................20
圖3.2一位元之TH BPAM訊號.....................21
圖3.3 MIMO UWB通訊系統的線性多用戶檢測器.....................25
圖4.1 M對SINR的影響.....................42
圖4.2 K對SINR的影響.....................43
圖4.3 NFR對SINR的影響.....................44
圖4.4取樣觀測次數J(2000~20000次)對RMSE之影響.....................45
圖4.5 SNR1(dB)對RMSE之影響(J=20000).....................46
圖4.6 NFR對RMSE的影響.....................47
圖4.7 M對SINR的影響.....................48
圖4.8 K對SINR的影響.....................49
圖4.9 NFR對SINR的影響.....................50

表目錄

表2.1耗電量比較表.....................8
[1]K. S. Gilhousen, I. M. Jacobs, R. Padovani, and L. A. Weaver, “Increased capacity using CDMA for mobile satellite communications,” IEEE Trans. Select. Areas Commun., vol. 8, pp. 503-514, May 1990.
[2]K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, and L. A. Weaver, “On the capacity of a cellular CDMA system,” IEEE Trans. Vech. Technol., vol. 40, no. 2, pp. 303-312, May 1991.
[3]M. Z. Win and R. A. Scholtz, “On the robustness of ultra-wide bandwidth signals in dense multipath environments,” IEEE Commun. Lett., vol. 2, pp. 51-53, Feb. 1998.
[4]M. Z. Win, R. A. Scholtz, “Impulse radio: How it works,” IEEE Commun. Letters, vol. 2, pp. 36-38, Feb. 1998.
[5]M. Z. Win, R. A. Scholtz, “Ultra-Wide Bandwidth Time-Hopping Spread-Spectrum Impulse Radio for Wireless Multiple-Access Communications,” IEEE Trans. Commun., vol 48, no. 4, Apr. 2000.
[6]Fernando Ramirez-Mireles, “Performance of ultra wideband SSMA using time hopping and M-ary PPM,” IEEE Journal on Select. Areas in Commun., vol. 19, pp. 1186-1196, June 2001.
[7]M. Z. Win and R. A. Scholtz, “Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view,” IEEE Journal on Select. Area in Commun., pp. 1613-1627, vol. 20, no. 9, Dec. 2002.
[8]V. Lottici, A. D’Andrea, and U. Mengali, “Channel estimation for ultra-wideband communications,” IEEE Journal on Select. Areas in Commun., pp. 1638-1645, vol. 20, no. 9, Dec. 2002.
[9]D. C. Laney, G. M. Maggio, F. Lehmann, and L. Larson, “Multiple access for UWB impulse radio with pseudochaotic time hopping,” IEEE Journal on Select. Areas in Commun., pp. 1692-1700, vol. 20, no 9, Dec. 2002.
[10]D. Porcino, W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Rail Conference, pp. 201-204, no. 6-8, April. 2004.
[11]S. Verdu, Multiuser Detection, Cambridge University Press, 1998.
[12]M. Ghavami, Ultra wideband signals and systems in communication engineering, John Wiley & Sons, Inc., 2004.
[13]M. Ghavami, Ultra wideband signals and systems in communication engineering, John Wiley & Sons, Inc., 2004.
[14]Gian Mario Maggio, An introduction to UWB, CWC/UCSD & STMicroelectronics, December, 2002.
[15]R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Ant. Propagation, Vol. AP-34:276-290, March 1986.
[16]H. Liu and G. Xu, “A subspace method for signature waveform estimation in synchronous CDMA systems,” IEEE Trans. Commun., Vol. COM-44, No. 10, pp. 1346-1354, Oct. 1966.
[17]FCC, “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission System,” First Report and Order, ET Docket pp.98-153, Feb. 2002.
[18]C. Fowler, J. Entzminger, J. Vorum, “Report: Assessment of Ultra-Wideband Technology,” OSD/DARPA Ultra-Wideband Rader Review Panel, R-6280, 1990.
[19]Gian Mario Maggio, “An introduction to UWB,” CWC/UCSD & STMicroelectronics, Dec. 2002.
[20]R. Fisher et al., “DS-UWB Physical Layer Submission to 802.15 Task Group 3a,” IEEE 802.15-04/0137r3, Motorola, Inc. et al., Jul. 2004.
[21]A. Batra et al., “Multi-band OFDM Physical Layer Proposal,” IEEE 802.15-03/267r6, Texas Instruments et al., Sept. 2003.
[22]A. Batra et al., “MultiBand OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a” MBOA-SIG, Sept. 2004.
[23]J. Foerster, E. Green, S. Somayazulu, and D. Leeper, “Ultra-Wideband Technology for Short- or Medium-Range Wireless Communications,” Intel technology Journal, Q2, pp. 1-11, 2001.
[24]Porcino, D.; Hirt, W., “Ultra-Wideband Radio Technology : Potential and Challenges Ahead,” IEEE Communication Magazine, Jul. 2003.
[25]S. Verdu. Multiuser Detection, Cambridge University Press, 1998.
[26]M. L. Welborn, “System considerations for ultra-wideband wireless networks,” IEEE Radio and Wireless Conference, pp. 5-8, 2001.
[27]R. A. Scholtz, “Multiple access with time-hopping impulse modulation,” Proc. MILCOM’93, vol. 2, pp. 447-450, 1993.
[28]Ian Oppermann, Matti Hamalainen, and Jari Iinatti, UWB Theory and Applications, John Wiley & Sons, Inc., 2004.
[29]M. Z. Win and R. A. Scholtz, “Ultra wide bandwidth time-hopping spread-spectrum Impulse Radio for wireless multiple access communications” IEEE Trans. on Communications, vol.48, no.4, pp. 679-691, April 2000.
[30]R. A. Scholtz, “Multiple access with time-hopping impulse modulation,” Proc. MILCOM’93, vol. 2, pp. 447-450, 1993.
[31]A.A.M. Saleh and R.A. Valenzuela, “A statistical model for indoor multipath propagation” IEEE J. Select. Areas Commun. 1987; 5(2): 128-137.
[32]A. F. Molisch et al., “A comprehensive standardized model for ultrawideband propagation channels” IEEE Trans. Antenna and Propagation 2006; 54(11): 3151-3165.
[33]D. Cassioli, M. Z. Win and A. F. Molisch, “The ultra-wide bandwidth indoor channel: from statistical model to simulations” IEEE J. Select. Areas Commun., vol. 20, pp. 1247-1257, Aug. 2002.
[34]L. C. Wang, W. C. Liu and K. J. Shieh, “On the performance of using multiple transmit and receive antennas in pulse-based ultrawideband systems” IEEE Transactions on Wireless Communications, vol. 4, no.6, pp. 2738-2750, Nov. 2005.
[35]L. Yang and G. B. Giannakis, “Ultrawideband communications: An idea whose time has come” IEEE Signal Processing Magazine, pp. 26-54, Nov. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top