跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 21:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:毛嘉輝
研究生(外文):Jia-Hui Mao
論文名稱:有機發光二極體封裝技術之研究
論文名稱(外文):The Study of Encapsulation Process in Organic Light Emitting Diode
指導教授:陳文瑞陳文瑞引用關係黃俊達黃俊達引用關係
指導教授(外文):Wen-Ray ChenJun-Dar Hwang
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:68
中文關鍵詞:氟化鋰封裝有機發光二極體
外文關鍵詞:lithium fluoridem-MTDATAPassivationOLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中我們將m-MTDATA及氟化鋰薄膜沈積在OLED元件上當作陰極保護層,量測並詳細探討封裝後之I-V特性、水滴接觸角和元件半衰期壽命。由於氟化鋰及m-MTDATA薄膜本身具有低熔點及幾乎絕緣特性,因此在OLED封裝上具有低溫封裝製程的優勢,以避免降低發光效率及元件壽命。
在此我們發現並採用氟化鋰薄膜當作封裝層,元件壽命有明顯的提升,當封裝氟化鋰80 nm厚度時,與無封裝元件相較下壽命明顯提升2倍。儘管如此,我們也發現氟化鋰薄膜的水滴接觸角明顯降低,並且表面上呈現高度親水特性。
以m-MTDATA來當作陰極保護層,封裝後操作壽命為29小時,與無封裝元件相較下壽命明顯提升5倍,事實上由於薄膜水滴接觸角明顯增大,顯露出高度的疏水性,元件壽命才如此擴大。
如果我們將m-MTDATA薄膜封裝製程應用於可撓式有機發光二極體(FOLED)上。另外將FOLED使用PET塑膠在充滿氮氣的環境下以UV膠密封。封裝後數據顯示,元件壽命提高到29.5小時,與無封裝元件相較下壽命提升約6.5倍。
In this thesis, the 4,4',4''-Tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (m-MTDATA) and the lithium fluoride (LiF) films were deposited on OLEDs as the cathode protective layers. After the device encapsulation, the I-V characteristics, the contact angles of water droplet and the half-life of OLED were measured and discussed in detail. Since the lithium fluoride and the m-MTDATA films have low melting point and nearly insulating characteristics. Therefore, it is an advantage that the low temperature encapsulation process was performed on the OLED passivation to avoid reducing the emission efficiency and device lifetime.
It was found that by adopting the lithium fluoride film as the passivation layer, the lifetime has a significant increase. With a 80nm-thick LiF, the passivated OLED shows a double lifetime compared to that of without passivated one. However, we also found that on top of the LiF film, the contact angle of water droplet was obviously reduced and the top surface shows highly hydrophilic.
With the m-MTDATA cathode protective layer, the passivated OLED showed a fivefold increase in operational lifetime (~29h) compared to that of without the passivation. Due to the fact that the contact angle of water droplet on the membrane surface is obviously enhanced and appears highly hydrophobic, the device life time is thus enlarged.
If the m-MTDATA film encapsulation process was applied on the flexible organic light emitting diode (FOLED). In addition, the FOLED was sealed with UV paste by using the PET plastics in an environment filled with nitrogen. The passivated device showed a 6.5 times increase in lifetime (~29.5 h) compared to that of without the passivation.
封面內頁
簽名頁
授權書.........................iii
中文摘要........................iv
英文摘要........................v
誌謝..........................vi
目錄..........................vii
圖目錄.........................x
表目錄.........................xiii

第一章 前言.. ....................1
第二章 OLED發光原理與封裝技術............4
2.1 OLED面板傳統與現階段之封裝技術.......4
2.2有機發光二極體發展歷史概述..........9
2.3有機發光二極體之發光原理..........10
2.4 OLED元件材料...............13
2.4-1 陽極材料..............13
2.4-2 陰極材料..............14
2.4-3 電洞傳輸材料............14
2.4-4 發光兼電子傳輸材料.........15
2.5元件衰退原因................15
2.6研究動機..................16
第三章 實驗步驟...................18
3.1 ITO玻璃基板之陽極電極圖案化與基板之清洗..18
3.1-1 ITO玻璃基板之陽極電極圖案化.....18
3.1-2 ITO玻璃基板之清洗..........20
3.2 OLED元件製作所用之材料........... 21
3.3有機蒸鍍系統................. 25
3.4金屬蒸鍍系統................28
3.5有機與金屬薄膜蒸鍍流程...........28
3.5-1有機薄膜蒸鍍流程........... 28
3.5-2金屬薄膜蒸鍍流程........... 30
3.6 OLED元件封裝...............31
3.7光電特性量測................31
3.7-1電壓-電流特性曲線量測......... 31
3.7-2輝度、光譜與色度座標量測....... 32
3.8元件壽命量測系統..............32
第四章 結果與討論...................35
4.1利用LiF薄膜改善有機發光二極體壽命之研究.. 35
4.1-1氟化鋰膜厚對元件亮度之影響...... 36
4.1-2氟化鋰膜厚對電流密度之影響...... 36
4.1-3氟化鋰膜厚對電流效率之影響...... 37
4.1-4氟化鋰膜厚對水滴接觸角之影響..... 38
4.1-5氟化鋰膜厚披覆對元件壽命之影響.... 39
4.1-6氟化鋰膜厚披覆之觀察......... 40
4.2 m-MTDATA薄膜改善有機發光二極體壽命研究..41
4.2-1 m-MTDATA膜厚對元件亮度之影響..42
4.2-2 m-MTDATA膜厚對電流密度之影響..43
4.2-3 m-MTDATA膜厚對電流效率之影響..44
4.2-4 m-MTDATA厚度披覆之水滴接觸角..45
4.2-5 m-MTDATA厚度披覆之元件壽命分佈..46
4.3薄膜封裝對可撓式元件壽命之影響.......48
4.4 驅動電流對元件量測之影響..........48
4.5 sputter備製TiO2薄膜封裝對元件之壽命影響...50
4.6 PECVD備製SiO2薄膜封裝對元件之壽命影響..53
4.7 PET塑膠蓋板封裝對OLED元件之壽命影響...57
4.8旋轉塗佈UV膠封裝對元件之壽命影響.....59
4.9玻璃蓋板封裝對OLED元件之壽命影響.....61
第五章 結論......................63
參考文獻........................ 65

圖目錄

圖2-1 OLED封裝結構示意圖................4
圖2-2 OLED多層膜封裝示意圖...............5
圖2-3 BarixTM多層膜之SEM截面圖............6
圖2-4 OLED多層膜封裝流程示意圖............6
圖2-5阻水性與透光性評估示意圖.............7
圖2-6 SiON膜之穿透率及濕氣滲透率............8
圖2-7(a)有機電激發光示意圖...............11
圖2-7(b)有機電激發光示意圖...............11
圖2-7(c)有機電激發光示意圖...............12
圖2-8有機電激發光元件之結構..............12
圖2-9有機發光二極體之能階圖...............13
圖3-1 NPB分子結構圖..................21
圖3-2 Alq3分子結構圖..................22
圖3-3 m-MTDATA分子結構圖...............23
圖3-4封裝膠的製備流程.................24
圖3-5均勻分散示意圖..................24
圖3-6 Filler的阻水氣性質示意圖..............25
圖3-7有機蒸鍍系統...................26
圖3-8金屬蒸鍍系統...................27
圖3-9量測元件示意圖..................34
圖4-1 LiF封裝層之有機發光二極體示意圖.........35
圖4-2 LiF膜厚之輝度對電壓曲線.............36
圖4-3 LiF膜厚之電流密度對電壓曲線...........37
圖4-4 LiF膜厚之電流效率對電壓特性曲線.........38
圖4-5 LiF厚度在OLED陰極封裝表面之接觸角曲線.....38
圖4-6 LiF披覆膜厚之OLED元件壽命測試.........40
圖4-7 LiF披覆膜厚於鋁薄膜上之顯微鏡照片........41
圖4-8 m-MTDATA封裝層之有機發光二極體示意圖.....41
圖4-9 m-MTDATA膜厚之輝度對電壓曲線.........42
圖4-10 m-MTDATA膜厚之電流密度特性對電壓曲線.....43
圖4-11 m-MTDATA膜厚之電流效率對電壓曲線.......44
圖4-12 m-MTDATA厚度於陰極披覆表面之接觸角......45
圖4-13 m-MTDATA膜厚之OLED元件壽命分佈........47
圖4-14 m-MTDATA封裝後暗點隨時間成長的過程.......47
圖4-15薄膜披覆於可撓式元件壽命分佈.............49
圖4-16不同驅動電流之元件壽命分佈..............50
圖4-17以sputter備製TiO2薄膜封裝示意圖...........51
圖4-18 Sputter披覆SiO2薄膜封裝之壽命測試曲線圖......52
圖4-19 TiO2薄膜封裝之金像顯微鏡照片............52
圖4-20以PECVD沈積SiO2薄膜封裝示意圖..........54
圖4-21以PECVD製作SiO2薄膜之FTIR分析圖........54
圖4-22 PECVD披覆SiO2薄膜封裝之壽命測試曲線圖.....55
圖4-23 PECVD封裝後點亮圖片.................55
圖4-24可撓式元件薄膜封裝之表面水滴角...........56
圖4-25可撓式塑膠蓋板封裝示意圖...............57
圖4-26塑膠蓋板封裝之壽命測試曲線圖.............59
圖4-27旋轉塗佈UV膠於OLED元件之示意圖.........59
圖4-28可撓式元件 UV膠封裝之壽命測試曲線圖.......61
圖4-29玻璃蓋板封裝於OLED元件之示意圖..........61
圖4-30 OLED元件玻璃蓋封裝之壽命測試曲線圖........62

表目錄

表1-1 OLED與各種顯示技術的比較............3
表4-1 LiF厚度在鋁陰極表面之水滴接觸角數據.......39
表4-2薄膜封裝及壽命測試之元件參數表..........49
表4-3 TiO2薄膜封裝與壽命測試之元件參數表........51
表4-4 SiO2薄膜封裝與壽命測試之元件參數表........55
表4-5可撓式塑膠蓋板封裝與壽命測試之元件參數表.....58
表4-6可撓式元件以UV膠封裝與壽命測試之元件參數表...60
表4-7玻璃封蓋封裝與壽命測試之元件參數表........62
[1] 楊琛喻,“平面顯示技術的新星-有機發光二極體”,電子月刊第十卷第六期,(2004) 122-129
[2] 常鼎國,“平面顯示器的明日之星-AMOLED之關鍵技術與未來發展”,電子月刊第十二卷第八期, (2006) 124-132
[3] 黃孝文,“有機電激發光二極體(OLED)顯示技術”,電子月刊第十卷第四期,(2004) 147-159
[4] 陳金鑫及黃孝文著,“有機電激發光材料與元件”,五南圖書出版公司,2005
[5] J. S. Lewis and M. S. Weaver, “Thin-Film Permeation- Barrier Technology for Flexible Organic Light-Emitting Devices”, IEEE J. Select. Topic Quantum Electron.‚ 10 (2004) 45-57
[6] http://www.vitexsys.com/new/index.htm 網站,“Barix Encapsulation for OLED Display”,Vitex Systems公司簡報
[7] 廖榕榆,“有機發光二極體用薄膜阻隔層技術簡介”,光電工程第九十四期,95.06
[8] A. Sugimoto‚ H. Ochi, S. Fujimura, A. Yoshida , T. Miyadera, M. Tsuchida “Flexible OLED Display Using Plastic Substrates”, IEEE J. Select. Topic Quantum Electron.‚ 10(1) (2004) 107-114
[9] H. Aziz‚ Z. Popovic‚ S. Xie‚ A. M. Hor‚ N. X. Hu‚ C. Tripp, G. Xu‚ “Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices”, Appl. Phys. Lett.‚ 72(7) (1998) 756-758
[10] 古俊能,”可撓曲有機發光二極體元件技術發展現況”,工業材料第195期,92.03
[11] H. Y. Sun, K. M. Lau, K. C. Lau, M. Y. Chan, M. K. Fung, C. S. Lee, and S. T. Lee, “Fluorocarbon film as cathode protective coating in organic light-emitting”, Appl. Phys. Lett., 88 (2006) 223503
[12] E. M. Han‚ L. M. Do, N. Yamamoto, M. Fujihira, “Crystallization of organic thin films for electroluminescent devices”, Thin Solid Films‚ 273 (1996) 202-208.
[13] W. R. Chen‚ N. C. Shih and F. S. Juang, “Effect of the Passivation Layers on Organic Light Emitting Diode”, IEEE Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on (Aug. 2005) 912-913
[14] 河村正行著,“有機EL顯示面板的原理與技術”,全華科技圖書股份有限公司,2005
[15] M. Pope, H. P. Kallmann, P. Magnante,“Electroluminescence in Organic Crystals”, J. Chem. Phys., 38 (1963) 2042
[16] C. W. Tang and S. A. VanSlyke,“Organic electroluminescent diodes”, Appl. Phys. Lett., 51 (1987) 913
[17] J. H. Burroughs, D. C.Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A.. B. Holmes, Nature , 347 (1990) 539
[18] S. Shigeyuki, Y. Sawada, T. Nishide, ”Indium–tin-oxide thin films prepared by dip-coating of indium diacetate monohydroxide and tin dichloride” , Thin Solid films, 388 (2001) 22-26
[19] T. Ishida, H. Kobayashi, Y. Nakato, ”Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements”, J. Appl. Phys., 73 (1993) 4344
[20] F. Li, H. Tang, J. Shinar ,O. Resto, S. Z. Weisz, ”Effects of aquaregia treatment of indium–tin–oxide substrates on the behavior of double layered organic light-emitting diodes”, Appl. Phys. Lett., 70 (1997) 2741
[21] S. K. So, W. K. Choi, C.H. Cheng, L. M. Leung, C. F. Kwong, “Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices”, Appl. Phys. A ,68 (1999) 447
[22] C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices”, Appl. Phys. Lett., 70 (1997) 1348
[23] J. S. Kim, R. H. Friend, F. Cacia,“Improved operational stability of polyfluorene-based organic light-emitting diodes with plasma- treated indium–tin–oxide anodes”, Appl. Phys. Lett.,74 (1999) 3084
[24] L. S. Hung, L. R. Zheng, M. G. Mason, “Anode modification in organic light-emitting diodes by low-frequency plasma polymerization of CHF3”, Appl. Phys. Lett. ,78 (2001) 673
[25] T. Mori, H. Fujikawa, S. Tokito, Y. Taga,“Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy”, Appl. Phys. Lett., 73 (1998) 2763
[26] M. Fujifira, L. M. Do, A. Koike, E. Han, “Groeth of dark spots by interdiffusion across organic layers in organic electroluminescent”, Appl. Phys. Lett. ,68 (1996) 1787
[27] P. N. M. dos Anjos, H. Aziz, N. X. Hu, Z. D. Popovic,”Temperture dependence of electroluminescence degradation in organic light emitting devices without and with a copper phthalocyanine buffer layer”, Organic Electronics,3(2002)9
[28] Y. Sato, H. Kanai,“Stability of Organic Electroluminescent Diodes”, Mol. Cryst. Liquid Cryst., 253 (1994) 143
[29] L. S. Liao, J. He, X. Zhou, M. Lu, Z. H. Xiong, Z. B. Deng, X. Y. Hou S. T. Lee,“Bubble formation in organic light-emitting diodes”, J. Appl. Phys., 88 (2000) 2386
[30] S. T. Lee, Z. Q. Gao, L. S. Hung,“Metal diffusion from electrodes in organic light-emitting diodes”, Appl. Phys. Lett.,75 (1999) 1404
[31] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, M. E. Thompson,“Reliability and degradation of organic light emitting devices”, Appl. Phys. Lett. , 65 (1994) 2922
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top