跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林彥名
研究生(外文):Lin yen min
論文名稱:以低溫燒結二氧化鈦薄膜製作延伸式閘極離子感測器
論文名稱(外文):Fabrication of TiO2 Extended-Gate H+-ion Sensitive Electrode at Low Temperature
指導教授:廖豐標姚品全姚品全引用關係
指導教授(外文):mliaopcyao
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:130
中文關鍵詞:二氧化鈦溶膠-凝膠法水熱法
外文關鍵詞:Titanium Dioxide(TiO2)sol-gel processhydrothermal processsystemafter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

本研究以兩種方式配置二氧化鈦懸浮液,其一以四異丙醇鈦(TTIP)作為先驅物,由溶膠-凝膠法配合膠溶作用合成二氧化鈦懸浮液;另一利用商業型二氧化鈦結晶粉末(Degusa P25)直接調配鍍膜液,分別塗佈於兩種透明導電基板:ITO玻璃與ITO PET塑膠,採用水熱法處理,以達到低溫燒結的目的。論文中探討各項製程條件對於所成長薄膜的形貌、晶相、表面結構等特性之影響,並以此結構為基礎,製作延伸式閘極氫離子感測器,探討各種上述各項結構的感測特性。
由掃描式電子顯微鏡(SEM)分析中明顯發現隨水熱處理時間增加,薄膜表面TiO2團聚直徑從70nm縮小至40nm,代表水熱處理有助於TiO2團聚的分散以得到更平整緻密的薄膜結構。此點可由原子力顯微鏡(AFM)中加以驗證,當水熱時間由0小時增至12小時,表面粗糙度由17.7nm降至11.36nm;且0.5M HCl 的水溶液水熱處理後可得到最佳的表面粗糙度(4.9nm)。XRD繞射圖譜顯示所合成TiO2晶相中以鈦的水合氧化物(Titanium hydroxoides)以及含氧空缺的Ti4O7晶相為主。拉曼(Raman)分析中得知:不同水熱處理時間所得拉曼光譜,產生頻譜位移的現象,隨著水熱處理時間及系統溫度的增加,Raman shift朝向高波數方向偏移,此一現象顯示水熱處理時,樣品在高壓情況下進行晶相轉換,與文獻記載相符。膜厚量測中可知道水熱處理前、後,都有相近似的厚度。以光學監控系統n&k分析儀量測薄膜透光率,結果顯示水熱處理前後,其可見光穿透率都高於80%;實驗顯示以塑膠基材(ITO/PET)長時間水熱處理下,易造成基材劣化而提升研究的困難性。
上述結構用於水溶液中氫離子濃度的感測,探討各項製程變數對其感測特性之影響;其感測結構中可分為:(A).TiO2(Sol-Gel)/ ITO/ Glass、(B).TiO2(P25)ITO/Glass、(C). TiO2(Sol-Gel)/ITO/PET、(D). TiO2(P25)/ITO/PET;以去離子水進行水熱處理其感測結構排列為(A)>(B)>(C)>(D),以0.5M HCl 水溶液水熱處理下感測結構排列為(C)>(A)>(B)>(D), 以0.5M NaOH 水溶液水熱處理下感測結構排為(C)>(A)>(B)>(D)。水熱處理中後發現結構(B),(D)分別在去離子水和HCl 水溶液和NaOH 水溶液水熱處理下其感測度有緩步提升的效果;而結構(A)。由以上結果可知結構(A)為最佳且穩定的感測元件,在酸鹼溶液氣氛下降低了水熱處理後的感測特性,仍始終保持穩定60µA/pH 以上的感測度。而結構(B)及結構(D)則受酸鹼溶液氣氛下提升了水熱處理後的感測特性,感測度提高至50µA/pH 以上。
In this study, low-temperature fabricated TiO2 thin films were conducted by hydrothermal treatment with a home-made autoclave. There are two types of TiO2 stock solution. One is synthesized by sol-gel route with titanium isopropoxide(TTIP) as precursor. The other is prepared by dispersing the commercial TiO2 nanoparticles in solvent. Rigid one (ITO-glass) and conductive flexible substrate(ITO-PET ) were used as substrate. The precursors were spin-coated on substrate. The as-deposited films were characterized by Raman、n&k, surface profiler, SEM、AFM and XRD, etc..
SEM photographs shows obviously that cluster diminish from 70nm to 40nm as the hydrothermal treatment time is increased from 0 to 24hrs which revealed that the clusters will be dispersed effectively under hydrothermal conditions. The facts were coincided with those derived by AFM since the surface roughness factor (Rms) is dropped from 17.7nm to 11.36nm. Besides, hydrothermal treatment can be conducted with aqueous solutions among which the 0.5M HClaq has the lowest Rms (4.9nm). The XRD patterns consist of titanium hydroxides with abundant of oxygen-deficient Ti4O7 crystalline. The Raman shift displaces toward high wavenumber as the hydrothermal process time and temperature were increased. The thickness of the films almost keep constant throughout the whole process as measured by surface profiler. Optical transmittance obtained by n&k optical system reveals that the films prepared in this study has visible light transmittance as high as 80% or above, no matter what the substrate and hydrothermal process is. The experiments show that the flexible substrate (ITO/PET) had low endurance for hydrothermal process for longer times owing to plastic degradation and will cause some difficulties in preparation.
The deposited films were connect to wires and encapsulated to make the EGFET as H+ sensor in aqueous solution. The structures were divided into four categories:(A).TiO2(Sol-Gel)/ITO/Glass,(B).TiO2(P25)ITO/Glass, (C).TiO2(Sol-Gel)/ITO/PET, (D).TiO2(P25)/ITO/PET. After hydrothermal treatment with deionized water, the sensitivity of the four structures follows the sequence (A)>(B)>(C)>(D), while the samples treated by 0.5M HCl instead of DI-water under identical conditions, the sensitivity sequence becomes: (C)>(A)>(B)>(D). In contrast, as 0.5M NaOH in place of HCl, the sensitivity lists as (C) >(A)>(B)>(D). The hydrothermal process increase the sensitivity structure (B) and (D). As a conclusion, the structure (A) has highest sensitivity t and stability, which remains the stability above 60µA/pH. while the samples treated by 0.5M HCl or 0.5M NaOH instead of DI-water under identical conditions, the sensitivity of structure (B) and (D) improved of 50µA/pH.
目錄

封面內頁
簽名頁
博碩士論文暨電子檔案上網授權書.............iii
中文摘要........................iv
誌謝..........................viii
目錄..........................ix
圖目錄.........................xii
表目錄.........................xvii

第一章 緒論...................... 1
1.1 研究背景.................... 1
1.2 研究動機.................... 4
1.3 研究架構及流程................. 6
第二章 文獻回顧與理論探討............... 8
2.1 文獻回顧.................... 8
2.1.1 生化感測器文獻回顧............ 8
2.1.2 水熱法文獻回顧..............12
2.2 二氧化鈦之介紹................ 14
2.2.1 二氧化鈦之性質..............14
2.2.2 二氧化鈦之結構..............16
2.2.3 氧化鈦薄膜之製備.............17
2.2.4 二氧化鈦之應用..............22
2.3 溶膠-凝膠法之介紹...............23
2.4 pH-感測場效電晶體理論分析...........29
2.4.1 pH-ISFET工作原理............30
2.4.2 pH-EGFET工作原理........... 34
2.4.3 電雙層(Electrical Double Layer)理論..... 36
2.4.4 吸附鍵結模型(Site-Binding Model)....... 36
2.4.5 感測度之定義...............40
第三章 實驗方法與量測.................41
3.1 二氧化鈦之溶液配置.............. 41
3.1.1 實驗藥品.................41
3.1.2 二氧化鈦之配製流程............41
3.2 基板清潔................... 44
3.3 二氧化鈦之薄膜製作.............. 44
3.4 二氧化鈦之低溫燒結.............. 45
3.5 感測元件之封裝................ 45
3.6 電性量測................... 46
3.7 薄膜特性分析................. 48
3.7.1 原子力顯微鏡分析(AFM) ......... 48
3.7.2 X-ray 繞射分析( XRD ) .......... 49
3.7.3 掃描式電子顯微鏡(SEM) ..........50
3.7.4 拉曼光譜(Raman Spectrum) .........51
3.7.5 膜厚量測儀................52
3.7.6 光學監控系統n&k分析儀......... 53
第四章 結果與討論................... 54
4.1 製程參數對感測度分析............. 54
4.2 製程參數對二氧化鈦薄膜材料之分析....... 75
4.2.1 SEM之表面形態分析........... 75
4.2.2 XRD之結晶特性分析........... 79
4.2.3 AFM之平均粗糙度分析.......... 83
4.2.4 Raman 之光譜分析............ 89
4.2.5 膜厚測量儀之探討.............93
4.2.6 光學監控系統n&k分析儀之探討...... 95
第五章 結論...................... 97
參考文獻........................98


圖目錄

圖1.1 研究架構流程圖第二章 文獻回顧與理論探討.... 7
圖2.1 化鈦三種主要的晶相結構............. 18
圖2.2 二氧化鈦相圖.................. 19
圖2.3 半導體對pH = 1水溶液的氧化還原電位的能階位置與水分解的標準氧化還原電[33] ............. 19
圖2.4 酸性觸煤之親電子取代反應............ 25
圖2.5 根離子螫合物反應圖............... 25
圖2.6 NS值對 -pH之影響...............39
圖2.7 固定NS值(1015 cm-2)時,不同Ka及Kb值對 -pH之影響.......................40
圖3.1 實驗架構流程圖................. 43
圖3.2 元件的封裝流程圖................ 45
圖3.3 感測結構之剖面圖................ 46
圖3.4 感測結構之等效量測圖.............. 46
圖3.5 封裝後實體圖.................. 47
圖3.6 高壓反應釜(autoclave)...............47
圖3.7 I-V量測電路之架構系統..............47
圖3.8 AFM原理圖...................48
圖3.9 X光繞射之幾何關係示意圖............ 49
圖3.10 SEM工作原理圖................ 50
圖3.11 三度共焦拉曼顯微鏡(Nanofinder 30)....... 51
圖3.12 膜厚量測儀量測方式示意圖............52
圖3.13 光學監控系統n&k分析儀 第四章 結果與討論...53
圖4.1 ITO/Glass以水熱處理之I-V曲線圖.........55
圖4.2 ITO/Glass以水熱處理之pH感測圖.........56
圖4.3 ITO/PET以水熱處理之I-V曲線圖......... 56
圖4.4 ITO/PET以水熱處理之pH感測圖......... 57
圖4.5 TiO2(Sol-Gel)/ITO/Glass以水熱處理之I-V曲線圖...58
圖4.6 TiO2(Sol-Gel)/ITO/Glass以水熱處理之pH感測圖...58
圖4.7 TiO2(P25)/ITO/Glass以水熱處理之I-V曲線圖.....59
圖4.8 TiO2(P25)/ITO/Glass以水熱處理之pH感測圖.....59
圖4.9 TiO2(Sol-Gel)/ITO/PET以水熱處理之I-V曲線圖... 60
圖4.10 TiO2(Sol-Gel)/ITO/PET以水熱處理之pH感測圖...60
圖4.11 TiO2(P25)/ITO/PET以水熱處理之I-V曲線圖.... 61
圖4.12 TiO2(P25)/ITO/PET以水熱處理之pH感測圖.... 61
圖4.13 TiO2(Sol-Gel)/ITO/Glass以HCl水熱處理之I-V曲線圖 63
圖4.14 TiO2(Sol-Gel)/ITO/Glass以HCl水熱處理之pH感測圖 63
圖4.15 TiO2(P25)/ITO/Glass以HCl水熱處理之I-V曲線圖..64
圖4.16 TiO2(P25)/ITO/Glass以HCl水熱處理之pH感測圖..64
圖4.17 TiO2(Sol-Gel)/ITO/PET以水熱處理之I-V曲線圖...65
圖4.18 TiO2(Sol-Gel)/ITO/PET以水熱處理之pH感測圖...65
圖4.19 TiO2(P25)/ITO/PET以HCl水熱處理之I-V曲線圖.. 66
圖4.20 TiO2(P25)/ITO/PET以HCl水熱處理之pH感測圖.. 66
圖4.21 TiO2(Sol-Gel)/ITO/Glass以NaOH水熱處理之I-V曲線圖.......................68
圖4.22 TiO2(Sol-Gel)/ITO/Glass以NaOH水熱處理之pH感測圖.......................68
圖4.23 TiO2(P25)/ITO/Glass以NaOH水熱處理之I-V曲線圖.69
圖4.24 TiO2(P25)/ITO/Glass以NaOH水熱處理之pH感測圖.69
圖4.25 TiO2(Sol-Gel)/ITO/PET以NaOH水熱處理之I-V曲線 圖....................70
圖4.26 TiO2(Sol-Gel)/ITO/PET以NaOH水熱處理之pH感測圖.....................70
圖4.27 TiO2(P25)/ITO/PET以NaOH水熱處理之I-V曲線圖.71
圖4.28 TiO2(P25)/ITO/PET以NaOH水熱處理之pH感測圖..71
圖4.29 結構A.(B).(C).(D)在不同酸鹼水溶液中感測度比較圖 73
圖4.30 TiO2(P25)無水熱處理之SEM圖..........76
圖4.31 TiO2(Sol-Gel)無水熱處理之SEM圖........77
圖4.32 TiO2(Sol-Gel)以150℃,2小時水熱處理之SEM圖..77
圖4.33 TiO2(Sol-Gel)以150℃,12小時水熱處理之SEM圖.78
圖4.34 TiO2(Sol-Gel)以150℃,24小時水熱處理之SEM圖.78
圖4.35 TiO2(P25)以150℃,2、12、24小時水熱處理之XRD圖......................80
圖4.36 TiO2(sol-gel)以150℃,2、12、24小時水熱處理之XRD圖......................81
圖4.37 TiO2(Sol-Gel)以150℃、2小時,含HCl、NaOH、CH3COOH水熱處理之XRD圖...............82
圖4.38 TiO2(P25)無水熱處理之AFM分析圖........83
圖4.39 TiO2(Sol-Gel)無水熱處理之AFM分析圖......84
圖4.40 TiO2(Sol-Gel) 以150℃,2小時水熱處理之AFM分析圖......................84
圖4.41 TiO2(Sol-Gel) 以150℃,12小時水熱處理之AFM分析圖......................85
圖4.42 TiO2(Sol-Gel) 以150℃,24小時水熱處理之AFM分析 圖.......................85
圖4.43 TiO2(Sol-Gel) 以170℃,2小時水熱處理之AFM分析圖.......................86
圖4.44 TiO2(Sol-Gel) 以190℃,2小時水熱處理之之AFM分析圖.......................86
圖4.45 TiO2(Sol-Gel) 以150℃、2小時,含CH3COOH水熱處理之AFM分析圖................87
圖4.46 TiO2(Sol-Gel) 以150℃、2小時,含NaOH水熱處理之AFM分析圖..................87
圖4.47 TiO2(Sol-Gel) 以150℃、2小時,含HCl水熱處理之AFM分析圖.....................87
圖4.48 TiO2(P25) 以150℃,0、2、12、24小時水熱處理之之Raman分析圖.....................89
圖4.49 TiO2(Sol-Gel) 以150℃,0、2、12、24小時水熱處理之Raman分析圖..................90
圖4.50 TiO2(Sol-Gel) 以150℃、170℃、190℃,2小時水熱處理之Raman分析圖................91
圖4.51 TiO2(Sol-Gel) 以150℃、2小時,含HCl、CH3COOH、NaOH水熱處理之Raman分析圖..........92
圖4.52 TiO2(P25)/ITO/PET無水熱處理之膜厚量測圖....93
圖4.53 TiO2(P25)/ITO/PET以水熱處理之SEM橫截面圖...94
圖4.54 TiO2(P25)/ITO/Glass無水熱處理之SEM橫截面圖..94
圖4.55 Glass、ITO/Glass、PET及TiO2(Sol-Gel)/ITO/Glass 以150℃水熱處理0hr、2hr、12hr、24hr 下,穿透光譜圖..96

表目錄


表2.1 二氧化鈦物性比較................ 20
表2.2 不同二氧化鈦成膜製備方法之優缺點比較...... 21
表2.3 溶膠-凝膠法製備TiO2溶液之方法比較........ 28
表2.4 ISFET結構與EGFET結構之特性比較........35
表3.1 反應物加水之配製反應.............. 42
表4.1 TiO2(Sol-Gel)在不同時間、溫度下之AFM粗造度比較.88
表4.2 TiO2(Sol-Gel)在不同酸鹼氣氛下之AFM粗造度比較..88
[1]陳陵援,儀器分析,三民圖書有限公司,pp.276-279, 1993.
[2]B. D. Liu, Y. K. Su, and S. C. Chen, Ion-Sensitive field-effect transistor with silicon nitride gate for pH sensing, Int. J. Electronics, Vol.67, pp.59-63, 1989.
[3]A. Topkar and R. Lal, Effect of electrolyte exposure on silicon dioxide in electrolyte-oxide-semiconductor structures, Thin Solid Films, Vol.232, pp.265-270, 1993.
[4]M. Yuqing, C. Jianrong, F. Keming, New technology for the detection of pH, Journal of biochemical and biophysical methods, Vol.63, pp.1-9, 2005.
[5]T. Matsuo, M. Esashi, Method of ISFET fabrication, Sensors and Actuators, Vol.1, pp.77-96, 1981.
[6]P. Bergveld, 1970, “Development of an Ion Sensitive Solid-State Device forNeurophysiological Measurement”, IEEE Transactions on BiomedicalEngineering, BME-17, PP.70-71.
[7]武世香,虞惇,王貴華,化學量傳感器,傳感器技術,第一期,pp.57-62, 1990.
[8]J. Van Der Spiegel, I. Lauks, P. Chan, and D. Babic, Sensors and Actuators, Vol.4, pp.291-298, 1983.
[9]Jung Lung Chiang, Jung Chuan Chou, Ying Chung Chen, 2001, “Study ofthe pH-ISFET and EnFET for Biosensor Applications”, Journal of Medicaland Biological Engineering, Vol. 21 (3), PP.135-146.
[10] 胡賀捷,在氧化鋁板上製備二氧化鈦薄膜的研究,台灣大學化工所,碩士論文,2000。
[11] A. R. Phani, S. Santucci, Materials Letters , Vol. 47, pp. 20, 2001.
[12] 陳永芳,以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦,交通大學應用化學所,博士論文,2002。
[13] S. H. Jung, S. W. Kang, Jpn.J.Appl.Phys , Vol. 40, pp. 3147, 2001.
[14] Il-Doo Kim,a_Yong Woo Choi, and HarryL. Tuller, 2005 ”Low-voltage ZnO thin-film transistors with high-K Bi1.5 Zn1.0 Nb1.5 O7 gate insulator for transparent and flexible electronics”,Applied Physics Letters 87, 043509 _2005
[15]張怡南,2000,生物感測器,生物技術的發展與應用,九州出版社, 第三版,PP. 303~320 。
[16] Clark L.C. and Lyons C., 1962, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery”, Ann. NY. Acad. Sci., Vol. 102, PP. 29-45.
[17] Michael J. Schoning and Arshak Poghossian, 2002, “Recent Advances in Biologically Sensitive Field-Effect Transistors (BioFETs)”, The Analyst, Vol. 127, PP.1137-1151.
[18] Jung Chuan Chou, Hsian Ming Tsai, Ching Nan Hsiao, Jinn Sung Lin, 1998, “Study and Simulation of the Drift Behaviour of Hydrogenated Amorphous Silicon Gate pH-ISFET”, Proceedings of 1998 Annual Symposium of the Biomedical Engineering Society, National Yang Ming University, Taipei, R.O.C., PP.339-342.
[19] Larissa Kasarian, Reihard Niessner, 2000, “A New Optical Fiber Multiplexer for Distortion-Free Light in Multichannel Fiber Optic Sensor Systems”, Sensors and Actuators B, Vol. 84, PP. 250-258.
[20] Ping Chang, Jeng Shong Shih, 1998, “Preparation and Application of Cryptand-Coated Piezoelectric Crystal Gas-Chromatographic Detector”, Analytica Chimica Acta, Vol. 360, PP. 61-68.
[21] Xiaojun Tong, De Zhang, 1999, “Novel Propagation Direction of Quasi-Longitudinal Leaky Surface Acoustic Wave on Quartz and Its Potential as Liquid Sensors”, Sensors and Actuators B, Vol. 78, PP. 160-162.
[22] Kasuga T.; Hiramatsu M.; Hoson A.; Sekino T.; Niihara K. “Titania Nanotubes Prepared by Chemical Processing” Adv. Mater. 11, 1307, (1999).
[23] Seo D. S.; Lee J. K.; Kim H. “Preparation of nanotube-shaped TiO2 powder” J. Cryst.Growth., 229, 428, (2001).
[24] Tsai C. C.; Teng H. S. “Regulation of the Physical Characteristics of Titania NanotubeAggregates Synthesized from Hydrothermal Treatment” Chem. Mater. 16, 4352,(2004).
[25] Perry, R. H.; Chilton, C. H. “Perry’s Chemical Engineers’ Handbook”, 7nd ed.; McGRAW-HILL Book Co.: New York, (1997).
[26] 垰田博史著,張晶、楊健譯。『光觸媒圖解』商周出版,2003,台北。
[27] S. D. Collins, 1993, “Practical Limits for Solid-State Reference Electrodes”,Sensors and Actuators B, Vol. 10, PP.169-178.
[28] Yuri G. Vlasov and Andrey V. Bratov, 1992, “Analytical Applications of pH-IFSETs”, Sensors and Actuators B, Vol.10, PP.1-6.
[29] Yin, Li-Tea; Chou, Jung-Chuanb; Chung, Wen-Yawc; Sun, Tai-Pingd; Hsiung, Kuang-Pine; Hsiung, Shen-Kanc , 2001 “Glucose ENFET doped with MnO2 powder” Sensors and Actuators B: 76(2001) 187-192, 2001
[30]M. A. Rashti and D. E. Brodie, 1994, “The Photoresponse of High Resistance Anatase TiO2 Films Prepared by the Decomposition of Titanium isopropoxide”, Thin Solid Films, Vol. 240, PP.163-167.
[31]. Ulrike D. “The surface science of titanium dioxide” Surf. Sci. Rep. 48, 53, (2003).
[32] 林國棟,2001,射頻磁控濺鍍TiO2 薄膜電容器之研究,國立清華大學,碩士論文。
[33]. M. Grätzel, “Photoelectrochemical cells” Nature, 414, 338, (2001).
[34] 簡國明,洪長春,吳典熹,王永銘、藍怡平, 奈米二氧化鈦專利地圖及分析 Titanium Dioxide,行政院國家科學委員會科學技術資料中心,pp.18-24, 2004。
[35] Giovanni A. Battiston, Roslba Gerbasi and Marina Porchia, 1994, “Influenceof Substrate on Structural Properties of TiO2 Thin Films Obtained ViaMOCVD”, Thin Solid Films, Vol. 239, PP. 186-191.
[36] Lili Hu, Toshinobu Yoko, Hiromitsu Kozuda and Sumio Sakka, 1992,“Effects of Solvent on Properties of Sol-Gel-Derived TiO2 Coating Films”,Thin Solid Films, Vol. 219, PP. 18-23.
[37] P. Falaras, A. Hugot-Le Goff, M. C Berhard, A. Xagas, Solar Energy Materials & Solar Cells, Vol. 64, pp.167, 2000.
[38] 周德瑜,四氯化鈦之控制水解研究,中央大學化學工程所,碩士論文,2001。
[39] K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, Y. Iguchi, Microstructure and crystallization behaviour of TiO2 Precursor by
[40] 李明智,以溶膠-凝膠法製備二氧化鈦應用於延伸式閘極氫離子感測場效電晶體,大葉大學電機工程研究所碩士論文,。
[41] 葉志揚,以溶膠-凝膠法製備二氧化鈦觸媒及性質鑑定,國立台灣大學化學工程研究所,台北市,pp.12-22,1999。
[42] 洪雨利,溶凝膠法製備奈米二氧化鈦觸媒進行光催化還原二氧化碳之批次反映研究,國立中山大學,碩士論文,2003。
[41] T. Katsube, I. Lauks, and J.N. Zemel, 1982, “pH-Sensitive Sputtered Iridium Oxide Films”, Sensors and Actuators B, Vol. 2 pp.399-410.
[42] Manuela Adami, Dario Alliata, Corrado del Carlo, mauro Martini, Luciana Piras, Marco Sartore, and Claudio Nicolini, 1995, “Characterization of Silicon Transducers with Si3N4 Sensing Surfaces by and AFM and a PAB system”, Sensors and Actuators B, Vol. 24-25, pp.889-893.
[43] C. Diekmann, C Dumschat, K. Cammann, and M.Knoll, 1995, “Disposable Reference Electrode”, Sensors and Actuators B, Vol.24-25, pp.276-278.
[44] 李先文,黃強,陳超,1997,“一次通用型局麻藥FET傳感器的研製與應用”,華西藥學雜誌,第12卷第12期,pp.243-245.
[45] 廖嵐彬,二氧化鈦酸鹼離子感測場效電晶體元件與積體化讀出電路之研究,國立雲林科技大學,2003。
[46] Young Wook Jeon,Jin Won Jung, Miran Kang, In Kwon Chung, Weontae Lee, 2001, “NMR Studies on Antitumor Drug Candidates, Berberine and Berberubine”, Bull. Korean Chem. Soc., Vol. 23,pp. 391-394.
[47] 蕭清南,1998,“非晶形矽氫與氧化坦酸鹼離子感測場校電晶體之溫度效應、遲滯和時漂的模擬與研究”,國立雲林技術學院,碩士論文。
[48] 江榮隆,1997,“非晶形三氧化鎢場效型離子感測元件之研究,國立雲林技術學院,碩士論文。
[49] 周榮泉,陳曉暉, 1997,“離子酸鹼感測器之模擬與研究”, Journal of Technology,Vol.12(2), pp.273- 284.
[50] 王乙方,2001,“以電漿輔助化學氣相沉積法備製非晶形矽氫與溶膠凝膠法備製二氧化錫閘極酸檢離子感測場效電晶體之研究”,國立雲林科技大學,碩士論文。
[51] D. A. Neamen, Semiconductor physics and devices:basic principles, McGraw-Hill, New York, pp.486-490, 2003.
[52] 李先文,黃強,1998,“硫酸根離子敏感半導體器件的研究”,分析實驗室,第17卷第3期,pp.91-93.
[53] T. Katsube, T. Araki, M. Hara, T. Yaji, S. Kobayashi and K. Suzuki, 1983, “A Multi-Species Biosensor with Extended Gate Field Effect Transistor” Proceedings of 6th Sensor Symposium, Tsukuba, Japan, pp.211-214.
[54] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, 2000, “Study on Extended Gate Field Effect Transistor with Tin Oxide Sensing Membrane”, Material Chemistry and Physics, Vol. 63, pp.19-23.
[55] L. L. Chi, L. T. Tin, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, 2000, “Study on Separative Structure of EnFET to Detect Acetycholinee”, Sensors and Actuators B, Vol. 71, pp.64-72.
[56] I. Lauks, J. Van Der Spiegel, W. Sansen and M. Steyaert, 1985, “Multispecies Integrated Electrochemical Sensor with on-Chip CMOS Circuitry”, Proceedings of International Conference on Solid State Sensors and Actuators Transducers, pp.122-124.
[57] L. K. Meixner and S. Koch, 1992, “Simulation of ISFET Operation Based on the Site-Binding Model”, Sensors and Actuators B, Vol. 6, PP.315~318。
[58] Y. H. Lee, K. K. Chan, and M. J. Brady, J. Vac. Sci. Technol. A,13(3), pp 596-601 (1995)
[59] A. Watanabe, Y. Imai, Thin Solid Films, 348, pp 63-68 (1999)
[60] C. C. Ting and S. Y. Chen, J. Appl. Phys., 88(8), pp 4628-4633 (2000)
[61] S. Stevenson et al. (eds). “Metal-Support Interactions in Catalysis, Sintering, rt interact-on between platinum and titanium dioxide. ” J. Am. Chem. Soc. 101 (1979) 2870.
[62] J.A. Horsley. “A molecular orbital study of strong metal-support, interact-tion between platinum and titanium dioxide. ” J. Am. Chem. Soc. 101 (1979) 2870.
[63] S.J. Tauster, S.C. Fung, R.T.K. Baker and J.A. Horsley. “Strong interact-tions in metal-support catalysts.” Science 211 (1981) 1121.
[64] Yang J.; Jin Z.; Wang X.; Li W.; Zhang J.; Zhang S.; Guo X.; Zhang Z. “Study oncomposition, structure and formation process of nanotube Na2Ti2O4(OH)2” Dalton Tans. 3898, (2003).
[65] Zhang M.; Jin Z. S.; Zhang J.; Guo X.; Yang J.; Li W.; Wang X.; Zhang Z. “Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2” J. Mol. Catal. A-Chem. 217, 203, (2004).
[66] Du G. H.; Chen Q.; Che R. C.; Yuan Z. Y.; Peng L. M. “Preparation and structure analysis of titanium oxide nanotubes” Appl. Phys. Lett. 79, 3702, (2001).
[67] Chen Q.; Du G H.; Zhang S.; Peng L. M. “The structure of trititanate nanotubes”, Acta Crystallogr. Sec. B. B58, 587, (2002).
[68] Chen Q.; Zhou W.; Du G.; Peng L. M. “Trititanate Nanotubes Made Via a Single Alkali Treatment’’ Adv. Mater. 14, 1208, (2002).
[69] Tian Z. R.; Voigt J. A.; Liu J.; Mckenzie B.; Xu H. “Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes” J. Am. Chem. Soc. 125, 12384, (2003).
[70] Zhang, S.; Peng, L.-M.; Chen, Q.; Du, G. H.; Dawson, G.; Zhou, W. Z. “Formation Mechanism of H2Ti3O7 Nanotubes” Phys. Rev. Lett. 91, 256103, (2003).
[71] Sun X.; Li Y. “Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes” Chem. Eur. J. 9, 2229, (2003).
[72] Ma R.; Bando Y.; Sasaki T. “Nanotubes of lepidocrocite titanates” Chem. Phys. Lett. 380, 577, (2003).
[73] Ma, R.; Fukuda, K,; Sasaki, T.; Osada, M.; Bando, Y. “Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-ray Absorption Fine Structure and Electron Diffraction Characterizations” J. Phys. Chem. B 109, 6210, (2005).
[74] P. Hoyer. “Formation of a titanium dioxide nanotube array.”Langmuir 12 (1996) 141.
[75] Yoldas.B.E﹐“Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters”﹐J.Mater.Sci.﹐21﹐(1986)1087
[76] K. Terabe﹐K.Kato﹐H. Miyazaki﹐S. Yamaguchi﹐A. Imai﹐Y. Iguchi﹐“Microstructure and crystallization behaviour of TiO2 Precursor prepared by the sol-gel method using metal alkoxide”﹐J. Mater. Sci.﹐29﹐(1994)1617-1622
[77] K. P. Kumar﹐and K. Keizer﹐“Effect of Peptization on Densification and Phase-Transformation Behavior of Sol-Gel-Derived Nanostructured Titania”﹐ J.Am.Ceram.Soc.﹐77(5)﹐(1994)1396-1400
[78] K. Kamiya﹐S. Sakka﹐“Thermal expansion of TiO2-SiO2 and TiO2-GeO2 glasses”﹐J. Non-Cryst. Solids.52﹐(1982)357
[79] J. Livsge﹐S. Doeuff﹐M.Henry and C.Sanchez﹐“Hydrolysis of titanium alkoxides: Modification of the molecular precular precursor by acetic acid”﹐ J. Non-cryst. Solids﹐89﹐(1995)206-216
[80] A. Matsuda, Y. Kotani, T. Kogure, M. Tatsumisago, and T. Minami,“Transparent anatase nanocomposite films bythe sol-gel process at low temperature”, Journal of the American Ceramic Society, 83, 229-231,2000
[81] Y. Kotani, A. Matsuda, T. Kogure, M. Tatsumisago, and T. Minami,“Effects of addition of poly(ethylene gloycol) on the formation of anatase nanocrystals in SiO2-TiO2 gel films with hot water treatment”, Chemistry of Materials, 13, 2144-2149, 2001
[82] H. Imai, and H. Hirashima, “Preparation of porous anatase coating
from sol-gel derived titanium dioxide and titanium dioxide-silica by water-vapor exposure”, Journal of the American Ceramic Society, 82,2301-2304, 1999
[83] H. Imai, H. Morimoto, A. Tominaga, and H. Hirashima, “Structural changes in sol-gel derived SiO2 and TiO2 films by exposure to water vapor”, Journal of Sol-Gel Science and Technology, 10, 45-54, 1997
[84] K. Shimizu, H. Imai, H. Hirashima, K. Tsukuma, “Low-temperature synthesis of anatase thin films on glass and organic substrate by direct deposition from aqueous solution”, Thin Solid Films, 351, 220-224, 1999
[85] F. Bosc, A. Ayral, P.-A. Albouy, and C. Guizard, “A simple route for low-temperature synthesis of mesoporous and nanocrystalline anatase thin film”, Chemistry of Materials, 15, 2463-2468, 2003
[86] 呂宗昕, “圖解奈米科技與光觸媒”, 商周出版, 台北市, 2003
[87] D. L. Harame, L. J. Bousse, J. D. Shott, and J. D. Meindl, 1987, “Ion-Sensing Devices with Silicon Nitride and Borosilicate Glass Insulators”, IEEE Transactions on Electron Devices, Vol. ED-34, PP.1700-1707.
[88] M. N. Niu, X. F. Ding, and Q. Y. Tong, 1996, “Effect of Two Types of Surface Sites on the Characteristics of Si3N4-gate pH-ISFETs”, Sensors and Actuators B, Vol. 37, PP.13-17.
[89] Chih Ming Sue, Hung Kwei Liao, Jung Chuan Chou. Wen Yaw Chung, Tai Ping Sun, and Shen Kan Hsiung, 1997, “Study on Si3N4/SiO2 Gate Ion Sensitive Field Effect Transistor”, Proceedings of Electron Devices and Materials Symposium (EDMS), National Central University, Chung-Li, Taiwan, R.O.C., PP.383-386.
[90] Hung Kwei Liao, Jung Chuan Chou. Wen Yaw Chung, Tai Ping Sun, and Shen Kan Hsiung, 1997, “Study on the Interface Trap Density of the Si3N4/SiO2 Gate ISFET”, Proceedings of The 3rd International East Asian Conference on Chemical Sensors, Hoam Convention Center, Seoul National University, Seoul Korea, November 5-6, PP.394-400.
[91] Chyan Rong Chen, Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, and Shen Kan Hsiung, 1997, “Study on Si3N4/SiO2/Si Structure for H+ Ion Sensing”, Proceedings of 1997 Annual Symposium of the Biomedical Engineering Society, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C.. December 12-13, PP.56-57.
[26] L. Bousse, H. H van der Vlekkert, and N. F. de Rooij, 1990, “Hysteresis in Al2O3-Gate ISFETs”, Sensors and Actuators B, Vol. 2, PP.103-110.
[92] H. Van Den Vlekkert, L. Bousse, and N. de Rooij, 1988, “The Temperature Dependence of the Surface Potential at the Al 2O3/Electrolyte Interface”, J. Colloid Interface Sci, Vol. 122, PP.336-345.
[93] D. H. Kwon, B. W. Cho, C. S. Kim, and B. K. Sohn, 1996, “Effect of Heat Treatment on Ta2O5 Sensing Membrane for Low Drift and High Sensitivity pH-ISFET”, Sensors and Actuators B, Vol.34, PP.441-445.
[94] Jung Chuan Chou and Ying Shin Li, Jung Lung Chiang, 2000, “Simulation of Ta2O5 Gate ISFET Temperature Characteristics”, Sensors and Actuators B, Vol. 71, PP.73-76, SCI。
[95] Jung Chuan Chou and Kai Ye Huang, Jin Sung Lin, 2000, “Simulation of Time Dependent Effects of pH-ISFETs”, Sensors and Actuators B, Vol. 62, PP.88-91, SCI。
[96] Chung Lin Wu, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, and Shen Kan Hsiung, 1999, “Study on SnO2/Al/SiO2/Si ISFET with a Metal Light Shield”, Materials Chemistry and Physics, Vol. 63, PP.153-156, SCI 期刊。
[97] 楊恩旭,1998,二氧化錫薄膜應用於離子感測場效電晶體之研究,中原大學,碩士論文。
[98] Hung Kwei Liao, Li Lun Chi, Jung Chuan Chou.; Wen Yaw Chung, Tai Ping Sun, and Shen Kan Hsiung, 1999, “Study on pHPZC and Surface Potential of Tin Oxide Gate ISFET”, Materials Chemistry and Physics, Vol. 59, PP.6-11, SCI。
[99] Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, and Shen Kan Hsiung, 1999, “Temperature and Optical Characteristics of Tin Oxide Membrane Gate ISFET”, IEEE Transactions on Electron Devices, Vol. 46(12), PP.2278-2281, EI。
[100] Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, and Shen Kan Hsiung, 2000, “The Influence of Isothermal Annealing on Tin Oxide Thin Film for pH-ISFET Sensor”, Sensors and Actuators B, Vol. 65, PP.23-25, SCI。
[101] Jung Chuan Chou and Jung Lung Chiang, 2000, “Study on the Amorphous Tungsten Trioxide Ion Sensitive Field Effect Transistor”, Sensors and Actuators B, Vol. 66, PP.106-108, SCI。
[102] Jung Lung Chiang, Jung-Chuan Chou, and Ying Chung Chen, 2001, “Study on the Temperature Effect, Hysteresis and Drift of pH-ISFET Device Based on Amorphous Tungsten Oxide”, Sensors and Actuators B, Vol. 76, PP.624-628, SCI。
[103] Jung Chuan Chou and Ching Nan Hsiao, 2000, “The Hysteresis and Drift Effect of Hydrogenated Amorphous Silicon for ISFET Sensor”, Sensors and Actuators B, Vol. 66, PP.181-183, SCI。
[104] Jung Chuan Chou, Ching Nan Hsiao, 2000, “Drift Behaviour of ISFETs with A-Si:H-SiO2 Gate Insulator”, Materials Chemistry and Physics, Vol. 63(3), PP.270-273, SCI。
[105] Jung Chuan Chou,Yii Fang Wang, and Jin Sung Lin, 2000,“Temperature Effect of A-Si:H pH-ISFET”, Sensors and Actuators B, Vol. 62, PP.92-96, SCI。
[106] Jung Chuan Chou and Yii Fang Wang, 2001, “Temperature Characterisitcs of A-Si:H Gate ISFET”, Materials Chemistry and Physics, Vol. 70, PP.107-111, SCI。
[107] Jung Chuan Chou, Hsjian Ming Tasi, and Ching Nan Hsiao, Jin Sung Lin, 2000, “Study and Simulation of the Drift Behaviour of Hydrogenated Amorphous Silicon Gate pH-ISFET”, Sensors and Actuators B, Vol. 62, PP.97-101, SCI 期刊。
[108] 蔡軒名,2001,以非晶形碳氫與非晶形矽氫當作氫離子感測場效電晶體閘極材料及其讀出電路之研究,國立雲林科技大學,碩士論文。
[109] Jung Lung Chiang, Shiun Sheng Jan, Ying Chung Chen, and Jung Chuan Chou, 2000, “Simulation and Study of the pH Sensing for AlN Thin Film”, Proceedings of Abstracts Book of The 8th International Meeting on Chemical Sensors, International Convention Center, Basel, Switzerland, July 2-5, P.400.
[110] Jung Lung Chiang, Shiun Sheng Jan, Ying Chung Chen, and Jung Chuan Chou, 2000, “Sensing Characteristics of ISFET Based on AlN Thin Film”, Proceedings of SPIE - The International Symposium on Optoelectronic Materials and Devices Ⅱ, Vol. 4078, Taipei, Taiwan, R.O.C., July 26-28, PP.689-696.
[111] Shiun Sheng Jan, Jung Lung Chiang, and Jung Chuan Chou, 2000, “Temperature Effects on PbTiO3 Gate pH-ISFET”, Proceedings of The 2000 International Electron Devices and Materials Symposia (IEDMS), National Central University, Chung Li, Taiwan, R.O.C., December 20-21, PP.242-245.
[112] Fung, C.D. Cheung, P.W. Ko, W.H. ‘’A Generalized Theory of an Electrolyte-Insulator-Semiconductor FielLd-Effect Transistor” IEEE Transactions on Electron Devices, VOL. ED-33, NO. 1, JANUARY 1986
[113] Hirodhi Abs, Masayoshi Esashi, Tadayuki Matsuo,1979 “ Isfet’s Using Inorganic Gate Tine Films”IEEE Transactions on Electron Devices, VOL. ED-26, NO. 12, December 1979
[114] William M. Siu and Richand S. C. Cobbold,“Basic Properties of the EIectrolyte-Si02-Si System:physical and Theoretical Aspects”, IEEE Transactions on Electron Devices, VOL. ED-26, NO. 11, November 1979
[115] Luc Bousse Nico F. De Rooij Piet Bergveld, “Operation of Chemically Sensitive Field-Effect Sensors As a Function of the
Insulator-Electrolyte Interface ,” IEEE Transactions on Electron Devices, VOL. ED-30, NO. 10, October 1983
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊