跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 10:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏瑋
研究生(外文):Bo-Wei Hwang
論文名稱:CuPc/Alq3有機發光二極體之製作與光電特性之研究
論文名稱(外文):Fabrication and Optoelectronic Properties of CuPc/Alq3 Organic Light Emitting Devices
指導教授:陳昭翰陳盛基陳盛基引用關係
指導教授(外文):Jau-Han ChenSheng-Ji Chen
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:74
中文關鍵詞:有機發光二極體銅苯二甲藍(CuPc)三(8-羥基喹啉)鋁(Alq3)
外文關鍵詞:organic light-emitting devicescopper phthalocyanine (CuPc)tris-(8-hydroxyquinoline) aluminum (Alq3)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要以熱蒸鍍方式於已鍍有氧化銦錫 (Indium Tin Oxide, ITO) 之導電玻璃上,在壓力105 torr以下成長有機材料薄膜,用以製作有機發光二極體(Organic Light Emitting Devices, OLED)。所使用的材料為銅苯二甲藍(Copper Phthalocyanine, CuPc)與三(8-羥基喹啉)鋁(Tris-(8-hydroxyquinoline) Aluminum, Alq3),以CuPc/Alq3雙層為基礎結構,探討膜厚與發光特性之關係。
此外,有機發光二極體之效率與元件之電阻大小有很大的關係,所以本論文也測量不同金屬電極與氧化銦錫(Indium Tin Oxide, ITO)陽極間之接觸電阻值,並間接得知使用氧電漿(oxygen plasma)處理過後之氧化銦錫的功函數變化情形。
由量測的電流對電壓(I-V)特性曲線來看,當銅苯二甲藍(CuPc)厚度為300 Å,三(8-羥基喹啉)鋁(Alq3)厚度為400 Å與600 Å時的底限電壓較小,約5 V~ 6 V左右。
氧化銦錫與金的接觸電阻率比較小,經過氧電漿處理過的氧化銦錫與金接觸電阻率更低,顯然金是比較適合做連接氧化銦錫的電極。
In this thesis, the organic light-emitting devices (OLED) were fabricated on indium tin oxide (ITO) conductive glass. The organic materials, copper phthalocyanine (CuPc) and tris-(8-hydroxyquinoline) aluminum (Alq3) were growth by thermal evaporation under 105 torr pressure. The influence of thickness of CuPc and Alq3 on the luminous efficiency of OLED with CuPc/Alq3 double layers structure was investigated.
Furthermore, the efficiency of OLED is related to the resistance of the device. Consequently, the contact resistance between different metal electrode and ITO was measured, and then got the circumstantial evidence about the variation of work function of ITO after oxygen plasma treatment.
From the results of I-V characteristic curves, the OLEDs with 300 Å CuPc and 400 Å or 600 Å Alq3 have the lowest threshold voltage, around 5 V to 6 V. The contact resistivity is lower between ITO and gold, and reduces lower after oxygen plasma treatment. Obviously, gold is the better choice for contact electrode with ITO.
封面內頁
簽名頁
授權書.........................iii
中文摘要........................iv
英文摘要........................v
誌謝..........................vi
目錄..........................vii
圖目錄.........................x
表目錄.........................xii

第一章 緒論......................1
1.1有機電激發光元件的發展...............1
1.2 有機發光材料特性介紹................3
1.3 有機發光二極體的潛在應用..... .. ......4
1.4 研究目的.......................5
1.5論文架構.............6
第二章 有機發光二極體與接觸電阻...............7
2.1有機發光二極體結構與發光機制...........7
2.2 雙層和多層的有機發光二極體............10
2.3有機發光二極體使用之材料.............14
2.3.1 電極材料.....................14
2.3.2 電洞傳輸與電洞注入材料............16
2.3.3 阻隔層材料...................17
2.3.4 電子傳輸與電子注入材料............18
2.3.5 主發光體和客發光體材料............19
2.4 接觸電阻量測方法..................21
第三章 實驗方法及步驟....................24
3.1實驗方法.......................24
3.2 熱蒸鍍系統......................25
3.3 實驗步驟.......................28
3.3.1氧化銦錫玻璃基板之清洗............28
3.3.2氧化銦錫玻璃基板之蝕刻............29
3.3.3有機材料CuPc/Alq3薄膜元件之成長......30
3.3.4 鋁塊之清洗...................32
3.3.5 金屬電極之成長.................32
3.4實驗量測儀器....................34
3.4.1 薄膜厚度量測..................34
3.4.2 有機發光二極體電流對電壓(I-V)特性量測. ..35
3.4.3 氧化銦錫(ITO)薄膜之電漿表面處理.......36
第四章 結果與討論......................38
4.1有機發光二極體之電流對電壓(I-V)特性曲線分析..38
4.1.1 CuPc/Alq3有機發光二極體I-V曲線特性...38
4.1.2有機發光二極體的衰退因素...........50
4.1.3實驗過程問題與改善..............51
4.2 接觸電阻量測分析..................53
第五章 結論........................58
參考文獻...........................59

圖目錄

圖1-1 柯達公司1987年首創採用異質接面雙層結構之有機發光二極體.......2
圖1-2 ITO/CuPc/Alq3/Al有機發光二極體之元件結構圖.....5
圖2-1 有機發光二極體基本結構圖.............8
圖2-2 雙層結構有機發光二極體之發光機制.........9
圖2-3 發光機制的兩種類型................10
圖2-4雙層式薄膜的有機發光二極體多層膜結構.......12
圖2-5三層式薄膜的有機發光二極體多層膜結構.......13
圖2-6多層式薄膜的有機發光二極體............14
圖2-7 銅苯二甲藍(CuPc)分子結構.............17
圖2-8 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)...18
圖2-9 常用的電子注入和傳輸材料分子結構.........19
圖2-10單層裝置的結構圖............. ...20
圖2-11能量轉移機制.............. ....20
圖2-12電流流動方向.............. ....22
圖2-13接面間的電阻.............. ....22
圖2-14接觸電阻量測示意圖.............. .23
圖2-15接觸電阻示意圖........ ......... 23
圖3-1 Glass/ITO/CuPc/Alq3/Al...............24
圖3-2蒸鍍系統圖........................27
圖3-3蒸鍍腔體內部實體圖...................27
圖3-4氧化銦錫玻璃基板蝕刻後之示意圖............29
圖3-5有機發光二極體之元件結構示意圖............33
圖3-6探針式表面輪廓儀.....................34
圖3-7探針式表面輪廓儀量測示意圖...... ........35
圖3-8 半導體參數分析儀...... ..............36
圖3-9氧化銦錫(ITO)薄膜電漿表面處理之高真空系統照片圖..37
圖4-1結構代號A2(ITO/CuPc/Alq3(200Å)/Al)樣品之I-V曲線..39
圖4-2結構代號A4(ITO/CuPc/Alq3(400Å)/Al)樣品之I-V曲線..39
圖4-3結構代號A6(ITO/CuPc/Alq3(600Å)/Al)樣品之I-V曲線..40
圖4-4結構代號A8(ITO/CuPc/Alq3(800Å)/Al)樣品之I-V曲線..40
圖4-5結構代號A10(ITO/CuPc/Alq3(1000Å)/Al)樣品之I-V曲線.41
圖4-6結構代號A15(ITO/CuPc/Alq3(1500Å)/Al)樣品之I-V曲線.41
圖4-7結構代號C1(ITO/CuPc(100Å)/Alq3/Al)樣品之I-V曲線..43
圖4-8結構代號C2(ITO/CuPc(200Å)/Alq3/Al)樣品之I-V曲線..43
圖4-9結構代號C3(ITO/CuPc(300Å)/Alq3/Al)樣品之I-V曲線..44
圖4-10結構代號C4(ITO/CuPc(400Å)/Alq3/Al)樣品之I-V曲線..44
圖4-11結構代號C5(ITO/CuPc(500Å)/Alq3/Al)樣品之I-V曲線..45
圖4-12結構代號C6(ITO/CuPc(600Å)/Alq3/Al)樣品之I-V曲線..45
圖4-13結構代號C10(ITO/CuPc(1000Å)/Alq3/Al)樣品之I-V曲線46
圖4-14結構代號C14(ITO/CuPc(1400Å)/Alq3/Al)樣品之I-V曲線46
圖4-15固定電流10 mA下ITO/CuPc/Alq3/Al元件發光圖....49
圖4-16固定電流5 mA下ITO/CuPc/Alq3/Al元件發光圖.....49
圖4-17 ITO/CuPc/BCP/Alq3/Al 有機發光二極體之能帶圖....52
圖4-18由接點2到3之間的測量得到接點3的接觸電阻架構圖.54
圖4-19由接點3到4之間的測量得到接點3的接觸電阻架構圖.55

表目錄

表3-1蝕刻參數表........................29
表4-1 CuPc/Alq3結構厚度資料表................38
表4-2 CuPc/Alq3結構厚度資料表................42
表4-3不同金屬沉積於經氧電漿處理與未處理之氧化銦錫(ITO).53
表4-4由接點2到接點3之間的測量得到接點3的接觸電阻率.54
表4-5由接點3到接點4之間的測量得到接點3的接觸電阻率.56
表4-6由接點2到3與接點3到4之間測得的接觸電阻率比較.57
[1] M. Pope, H. Kallmann, P. Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys., Vol. 38, pp. 2042-2043, April 1963.
[2] W. Helfrich and W. G. Schneider, “Recombination Radiation in Anthracene Crystals”, Phys. Rev. Lett., vol. 14, pp. 229-231, Feb. 1965.
[3] P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Roberts, “Electrical Conduction and Low Voltage Blue Electroluminescence in Vacuum-Deposited Organic Films,” Thin Solid Films, vol. 94, pp. 171-183, Aug. 1982.
[4] G. G. Roberts, M. McGinnity, W. A. Barlow and P. S. Vincett, “Electroluminescence, photoluminescence and electroabsorption of a lightly substituted anthracene langmuir film,” Solid State Commun., vol. 32, pp. 683-686, Nov. 1979.
[5] R. H. Partridge, “Electro-luminescence from polyvinylcarbazole films,” Polymer, vol. 24, pp. 733-738, June 1983.
[6] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, pp. 913-915, Sept. 1987.
[7] C. W. Tang, S. A. Vanslyke and C. H. Chen, “Electroluminescence of Doped Organic Thin Films,” J. Appl. Phys., vol. 65, pp. 3610-3616, May 1989.
[8] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, and A. B. Holmes, “Light emission from poly(p-phenylene vinylene): A comparison between photo- and electro-luminescence,” Synthetic Metals, vol. 43, pp. 3135-3141, June 1991.
[9] M. A. Baldo, D. F. O’Brien, M. E. Thompson, and S. R. Forrest, “Excitonic singlet-triplet ratio in a semiconducting organic thin film,” Phys. Rev. B, vol. 60, pp. 14422–14428, Nov. 1999.
[10] M. A. Baldo, M. E. Thompson, and S. R. Forrest, “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer,” Nature, vol.403, pp. 750-753, Feb. 2000.
[11] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, pp. 913-915, Sept. 1987.
[12] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, “Electroluminescence in Organic Films with Three-Layer Structure,” Jpn. J. Appl. Phys. Vol. 27, L269-L271, Feb. 1988.
[13] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, “Organic Electroluminescent Device with a Three-Layer Structure,” Jpn. J. Appl. Phys., vol. 27, L713-L715, April 1988.
[14] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, “Confinement of charge carriers and molecular excitons within 5-nm-thick emitter layer in organic electroluminescent devices with a double heterostructure,” Appl. Phys. Lett., vol. 57, pp. 531-533, Aug. 1990.
[15] Y. Ohmori, A. Fujii, M. Uhida, C. Morishima, and K. Yoshino, “Observation of spectral narrowing and emission energy shift in organic electroluminescent diode utilizing 8-hydroxyquinoline aluminum/aromatic diamine multilayer structure,” Appl. Phys.Lett., vol. 63, pp. 1871-1873, Oct. 1993.
[16] F. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett., vol. 70, pp. 152-154, Jan. 1997.
[17] H. G. E. Jabbour, Y. Kawabe, S. E. Shaheen, M. M. Morrell, J. F. Wang, B. Kippelen, and N. Peyghambarian, “Highly efficient and bright organic electroluminescent devices with an aluminum cathode,” Appl. Phys. Lett., vol.71, pp. 1762-1764, Sept. 1997.
[18] T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, “Organic EL cells using alkaline metal compounds as electron injection materials,” IEEE Trans. Electron Devices, vol. 44, pp. 1245-1248, Aug. 1997.
[19] G. E. Jabbour, B. Kippeien, N. R. Armstrong, and N. Peyhambarian, “Aluminumbased cathode structure for enhanced electron injection in electroluminescent organic devices,” Appl. Phys. Lett., vol.73, pp. 1185-1187, Aug. 1998.
[21] K. Yamashita, T.. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting-diode using TPD derivatives with diphenylstylyl groups as hole transport layer,” Thin Solid Films, vol. 363, pp. 33-36, March 2000.
[22] C. Adachi, K. Nagai, and N. Tamoto, “Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes,” Appl. Phys. Lett., vol.66, pp. 2679-2681, May 1995
[23] Y. Shirata, Y. Kuwabara, D. Okuda, R. Okuda, H. Ogawa, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, “Starburst molecules based on -electron systems as materials for organic electroluminescent devices,” J. Lumin., vol.72-74, pp. 985-991, June 1997.
[24] Y. Shirota, K. Okumoto, and H. Inada, “Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials,” Synth. Met., vol. 111-112, pp. 387-391, June 2000.
[25] J. Kido and Y. Iizumi, “Efficient electroluminescence from tris(4-methyl-8-quinolinolato)aluminum(III),” Chem. Lett., vol.26, pp. 963-964, Oct. 1997.
[26] H. Murata, Z. H. Kafafi, and M. Uchida, “Efficient organic light-emitting diodes with undoped active layers based on silole derivatives,” Appl. Phys. Lett., vol. 80, pp. 189-191, Jan. 2002.
[27] C. H. Chen and C. W. Tang, in Chemistry of Functional Dyes, vol. 2, Proceedings of the Second International Symposium on Chemistry of Functional Dyes, 1993, pp. 536.
[28] J. Littman and P. Martic, “Efficient organic electroluminescent device using a single bipolar carrier transport layer,” J. Appl. Phys., vol. 72, pp. 1957-1960, Sept. 1992.
[29] Dieter K. Schroder, Semiconductor Material and Device Characterization, 3rd ed.Hoboken, NJ: John Wiley & Sons, 2006, pp. 138-149.
[30] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation Mechanism of Small Molecule-Based Organic Light-Emitting Devices,” Science , vol. 283, pp. 1900-1902, March 1999.
[31] Z. Y. Xie, L. S. Hung, and S. T. Lee, “High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure,” Appl. Phys. Lett., vol. 79, pp. 1048-1050, August 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文