跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴建宏
研究生(外文):Jian-Hong Lai
論文名稱:高真空退火處理對ZnO:Fe薄膜光電特性之效應研究
論文名稱(外文):Effects of High-Vacuum Annealing on The Photoelectric Properties of ZnO:Fe Films
指導教授:王立民王立民引用關係范榮權
指導教授(外文):L. M. WangJ. C. Fan
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:104
中文關鍵詞:氧化鋅電阻率化學分析影像能譜儀高真空退火
外文關鍵詞:ZnO、Resistivity、XPS、High-Vacuum Annealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究裡利用RF濺鍍成長ZnO:Fe薄膜,探討藉由高真空退火對ZnO:Fe薄膜之導電性(conductivity)、載子濃度(carrier concentraction)、遷移率(mobility)、光穿透率(transmission)以及磁化強度(magnetization)之影響,並利用化學分析影像能譜儀(Electron Spectroscopy for chemical Analysis System,XPS)分析薄膜化學組態。進而獲得具良好光電特性ZnO:Fe薄膜之最佳退火製程條件。
實驗結果顯示最佳製程條件為 ZnO靶材射頻功率30 W、Fe靶材射頻功率10 W、工作壓力1 mTorr、退火溫度510 ℃、退火時間60分鐘、退火壓力8.5×10-6torr,對於最佳製程參數成長之150 nm ZnO:Fe薄膜其電阻率為2.24×10-3 Ω cm,載子濃度為2.78×1021 cm-3,遷移率為1.01 cm2/Vs,在可見光範圍之穿透率可以達92.35 %。由XPS分析後可知道Fe為Fe+3,符合摻雜原則。另外,薄膜晶粒越大,電阻率越小,符合片電阻與晶粒大小成反比之晶界散射模型之預期。
ZnO:Fe films were grown by the RF magnetrom sputtering technique. In this work we studied the effects of high-vacuum annealing on the conductivity、carrier concentration、mobility、transmittance and magnetization of ZnO:Fe films. The electron spectroscopy for chemical analyses (ESCA) was used to analyze the chemical states of ZnO:Fe thin films. The sputtering parameters were adjusted and employed to obtain the optimum electro-optical properties of ZnO:Fe thin films.
The optimum conditions for the growth of 150-nm thick ZnO:Fe films are obtained with ZnO RF power = 30 W、Fe RF power = 10 W、working pressure = 1 mTorr、annealing pressure=8.5×10-6 torr and annealing temperature of 510 ℃、for 60 mins. As a result, we have successfully achieved the lowest resistivity of 2.24×10-3 Ωcm, and the carrier concentration of 2.78×1021 cm-3 with the mobility of 1.01 cm2/Vs. The average optical transmittance within the visible spectra is higher than 92.35 %. The ESCA analysis reveals that the valence of Fe is triplicate. Moreover, the resistivity is reduced with the increase of the grain size, being consistent with the prediction of grain-boundary-scattering model.
目錄

封面內頁
簽名頁
授權書.........................iii
中文摘要........................iv
英文摘要........................v
誌謝..........................vi
目錄..........................vii
圖目錄.........................xi
表目錄.........................xv

第一章 緒論
1.1前言.....................1
1.2研究動機與目的................1
1.3透明導電膜之發展...............2
1.4 ZnO摻雜使其導電的研究現況..........5
1.5磁性ZnO的摻雜...............6
1.6文獻上磁性ZnO摻雜的實驗結果........8
第二章 理論基礎
2.1氧化鋅薄膜結構及特性............11
2.2 熱處理...................13
2.3 XRD結構分析理論基礎............15
2.3.1 布瑞格繞射定律.............15
2.3.2 施瑞爾關係式..............16
2.4 晶粒與晶界對片電阻之關係..........18
2.5 磁滯曲線..................19
第三章 實驗方法與步驟
3.1 實驗流程..................22
3.2 實驗材料..................24
3.2.1 靶材..................24
3.2.2 基材..................24
3.3 實驗裝置..................25
3.4 鍍膜參數及步驟...............28
3.4.1 鍍膜參數................28
3.4.2 退火參數................29
3.4.3 基座清洗................29
3.4.4 沉積ZnO:Fe 薄膜...........29
3.4.5 退火ZnO:Fe 薄膜...........30
3.5薄膜性質測試與分析.............30
3.5.1 霍爾效應量測..............30
3.5.2 X-Ray 繞射分析.............33
3.5.3化學分析影像能譜儀...........34
3.5.4光學穿透度量測.............36
3.5.5 表面平坦度量測.............37
3.5.6 超導量子干涉磁量儀...........37
3.5.7 X射線能量散佈分析儀..........39

第四章 結果與討論
4.1 退火參數對ZnO:Fe薄膜之結構研究......41
4.1.1 ZnO:Fe薄膜晶格常數變化之探討....41
4.1.1.1退火溫度之影響.........41
4.1.1.2退火時間之影響.........41
4.1.2 ZnO:Fe薄膜半高寬與晶粒大小變化之探討42
4.1.2.1退火溫度之影響.........42
4.1.2.2退火時間之影響.........43
4.1.3 ZnO:Fe薄膜表面型態變化之探討....50
4.1.3.1退火溫度之影響.........50
4.1.3.2退火時間之影響.........51
4.1.4 ZnO:Fe薄膜含量變化之探討......56
4.1.4.1退火溫度之影響.........56
4.1.4.2退火時間之影響.........56
4.2 退火前後對ZnO:Fe薄膜化學組態分析.....59
4.2.1 ZnO:Fe薄膜結構之影響:退火前後之決定59
4.3 退火溫度對ZnO:Fe薄膜光電特性之影響....65
4.3.1 ZnO:Fe薄膜電特性之影響:退火溫度、退火時間之決定..............65
4.3.2退火前後對電阻率、載子濃度與遷移率之探討..................71
4.3.3退火前後對光穿透率之探討.......77
4.3.4磁性現象...............81

第五章 結論......................83
參考文獻........................84






















圖目錄

圖1.1 以理論預測Mn與Co摻雜ZnO系統其載子濃度對鐵磁相穩定之相依關係...................9
圖2.1 ZnO六方晶系結構.................6
圖2.2 晶粒燒結過程圖..................15
圖2.3 布拉格晶格繞射示意圖...............14
圖2.4 磁滯曲線圖....................17
圖3.1 實驗流程.....................19
圖3.2 薄膜製程設備...................22
圖3.3 ZnO:Fe 薄膜製備相關位置圖............23
圖3.4 典型霍爾量測的配置................28
圖3.5 Hall Effect 量測圖形及量測方式...........28
圖3.6 X光繞射儀裝置圖.................29
圖3.7 PC量測實驗裝置圖.................30
圖3.8 超導量子干涉磁量儀儀器裝置............33
圖3.9 能量散佈分析儀裝置................35
圖4.1為ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr在退火時間60分鐘、退火溫度510 ℃下,所得的X-ray繞射圖.......................45
圖4.2為ZnO射頻功率30 W、Fe射頻功率10 W、退火時間60分鐘、工作壓力1 mTorr在不同的退火溫度下所得的c軸方向晶格常數圖...................46
圖4.3為ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火溫度510 ℃在退火時間60分鐘,所得的X-ray繞射圖......................47
圖4.4 ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火溫度510 ℃在不同的退火時間下,ZnO:Fe薄膜c軸方向晶格常數圖..................48
圖4.5 ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火時間60分鐘,在不同的退火溫度下,所得的半高寬圖與晶粒大小圖................49
圖4.6 ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火溫度510 ℃在不同的退火時間下,所得的FWHM與晶粒大小圖...............50
圖4.7 (a)-(e) 為ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr,不同退火溫度下,所退火之ZnO:Fe薄膜的AFM表面型態圖 (a)450 ℃、(b)480 ℃、(c)510 ℃、(d)540 ℃、(e)570 ℃...................53
圖4.8 ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr,不同退火溫度下,所退火之ZnO:Fe薄膜的AFM之表面平整度曲線圖....................54
圖4.9 (a)-(d) 為ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火溫度510 ℃,不同退火時間下,所退火之ZnO:Fe薄膜的AFM表面型態圖..........55
圖4.10 ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火溫度510 ℃,不同退火時間下,所退火之ZnO:Fe薄膜的AFM之表面平整度曲線圖...........56
圖4.11為ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火時間60分鐘,在不同的退火溫度下,所退火之ZnO:Fe薄膜的Fe/Zn百分比與退火溫度圖......58
圖4.12為ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr,退火溫度510 ℃在不同的退火時間下,所退火之ZnO:Fe薄膜的Fe/Zn百分比與退火溫度圖......59
圖4.13 氧化鋅薄膜經由510 ℃退火前後之ESCA分析的Survey 圖........................62
圖4.14 為ZnO:Fe薄膜退火前後之Zn 2p3/2 、Zn 2p1/2 Multiplex 圖........................63
圖4.15 為ZnO:Fe薄膜退火前之O 1s Multiplex圖.....64
圖4.16 為ZnO:Fe薄膜退火後之O 1s Multiplex圖.....64
圖4.17 為ZnO:Fe薄膜退火前後之Fe 2p Multiplex圖....65
圖4.18 ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火時間60分鐘,ZnO:Fe薄膜在不同的退火溫度,所退火之ZnO:Fe薄膜的電阻率作圖........68
圖4.19 ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火溫度510℃,ZnO:Fe薄膜在不同的退火時間,所退火之ZnO:Fe薄膜的電阻率作圖...........69
圖4.20 ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火時間60分鐘, ZnO:Fe薄膜在不同的退火溫度,所退火之ZnO:Fe薄膜的晶粒大小(D)與電阻率作圖....70
圖4.21 ZnO射頻功率30 W,Fe射頻功率10 W、工作壓力1 mTorr、退火時間60分鐘,ZnO:Fe薄膜在不同的退火溫度,所退火之ZnO:Fe薄膜的晶粒大小(D)與電阻率對應圖.71
圖4.22 改變ZnO射頻功率,Fe射頻功率10 W、工作壓力1 mTorr、 退火溫度510 ℃,退火前後ZnO:Fe薄膜之電性關係圖,(a)退火前、(b)退火後...............75
圖4.23 改變Fe射頻功率,ZnO射頻功率30 W、工作壓力1 mTorr、退火溫度510 ℃,退火前後ZnO:Fe薄膜之電性關係圖,(a)退火前、(b)退火後...............76
圖4.24 不同工作壓力、ZnO射頻功率30 W、Fe射頻功率10 W、退火溫度510 ℃,退火前後ZnO:Fe薄膜之電性關係圖,(a)退火前、(b)退火後...............77
圖4.25 ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火時間60分鐘,不同退火溫度的ZnO:Fe薄膜之穿透率曲線圖......................79
圖4.26 ZnO射頻功率30 W、Fe射頻功率10 W、工作壓力1 mTorr、退火時間60分鐘,ZnO:Fe薄膜在不同的退火溫度,所退火之ZnO:Fe薄膜之平均光穿透率的曲線圖.....80
圖4.27 為ZnO:Fe薄膜經由高真空退火前後之低磁場(500 Oe)下 FC之磁化強度對溫度關系圖............82

表目錄

表1.1 一些目前常用的透明導電物.............3
表3.1 康寧玻璃1737F 之特性..............25
表3.2 鍍膜參數.....................28
表4.1 退火前、退火後衛星峰O 1s之比值關係.......66
表4.2 在不同的環境下退火的電阻率............74
參考文獻

[1]、J. E. Byrne, “Recovery Recrystallization and Grain Growth” , Macmillan Publishing, (1965).
[2]、P. L. Chen, R. S. Muller, R. D. Jolly, G. L. Halac, R. M. White, A. P. Andrews, T. C. Lim, M.E. Motamedi, IEEE Trans. Electron Devices 29 (1982) 27.
[3]、E. S. Kim, R. S. Muller, IEEE Electron. Device Lett. 8 (1987) 467.
[4]、K. M. Lakin, J. S. Wang, “Acoustic bulk wave composite resonators” , Appl. Phys. Lett. 38 (1981) 125.
[5]、陽明輝;工業材料雜誌,第179 期2001 年11 月,P.135
[6]、R. Cebulla, R. Wendt, K. Ellmer, “Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties” , J. Appl. Phys. 83 (2), 15 January 1998
[7]、P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, R. Martins, “Effect of different dopant elements on the properties of ZnO thin films” , Vacuum 64 (2002) 281-285
[8]、S. Major, Satyendra Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides” , Appl. Phys. Lett. 49, 394 (1986).
[9]、S. H. Jeong, J. H. Boo, “InFluence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering” , Thin Soild Films 447-448 (2004) 105-110
[10]、H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films” , published by Institute of Physics Publication, 1995, Chap. 3.
[11]、Fortunato, Elvira; Gonçalves, Alexandra; Assunção, Vitor; Marques, António; et. al., “Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence” , Thin Soild Films 442 (2003) 121-126
[12]、Y. Igasaki and H. Saito, Thin Solid Films 199 (1991) 223.
[13]、P. Nunes, E. Fortunato, R. Martins, “Infuence of the post -treatment on the properties of ZnO thin films” , Thin Soild Films 383 (2001) 277-280
[14]、G. A. Hirata, J. M. Siqueiros, J. A. Diaz, O. Contreras, J. McKittrick, T. Cheeks, O. A. Lopez, “Synthesis and optelectronic characterization of gallium doped zinc oxide transparent electrodes” , Thin Soild Films 288 (1996) 29-31
[15]、E. Burstein, “Anomalous Optical Absorption Limit in InSb”, Phys.Rev.,93(1954) p.632-633.
[16]、Fortunato, Elvira; Gonçalves, Alexandra; Assunção, Vitor; Marques, António, “Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence” , Thin Soild Films 442 (2003) 121-126
[17]、I. Safi, R. P. Howson, “The properties of reactively-sputtered, stoichiometry-controlled and optimum-conductivity transparent indium oxide films as a function of their titanium, aluminium and zinc content; comparisons with the use of tin as a dopant” , Thin Soild Films 343-344 (1996) 123
[18]、H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs” , Appl. Phys. Lett. 69, 363 (1996).
[19]、S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, and H. Munekata, “Ferromagnetic Order Induced by Photogenerated Carriers in Magnetic III-V Semiconductor Heterostructures of (In,Mn)As/GaSb” , Phys, Rev. Lett. 78, 4617 (1997).
[20]、T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zenar model description of ferromagnetism in zinc-blende magnetic semiconductors” , Science 287, 1019 (2000)
[21] D. L. Raimondi and E. Kay, J. Vac. Sci. Technol. Vol.7, No.1 (1969) 96.
[22]、Paraguay D., F. ; Estrada L., W.; Acosta N., D.R.; Andrade, E.;
Miki-Yoshida, M. “Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis” , Thin Solid Films 350 (1999) 192±202
[23]、E. Burstein, “Anomalous Optical Absorption Limit in InSb” , Phys. Rev.,93(1954) p.632-633.
[24]、T. S. Moss, “The Interpretation of the Properties of Indium Antimonide” , Phys. Soc. London Sect. B, 67(1954) p.775-782.
[25]、許樹恩,吳泰伯,“X 光繞射原理與材料結構分析”,中國材料科學學會 (1996) p161-163
[26]、許樹恩,吳泰伯,“X 光繞射原理與材料結構分析”, 中國材料科學學會 (1996) p422-425
[27]、A. K. Kulkarni, Kirk H. Schulz, T. S. Lim, M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques” , Thin Soild Films 345 (1999) 273-277
[28]、T. L. Tansley, D. F. Neely, “Adsorption, desorption and conductivity of sputtered zinc oxide thin films” , Thin Soild Films 121 (1984) 95
[29]、K. H. Yoon, J. W. Choi, D. H. Lee, “Characteristics of ZnO thin
films deposited onto Al/Si substrates by r.f. magnetron sputtering” , Thin Solid Films 302 (1997) 116.
[30]、S. Takada, “Relation between optical property and crystallinity of
ZnO thin films prepared by rf magnetron sputtering.” , J. Appl. Phys. 73(10) (1993)4739.
[31]、Kun Ho Kim, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering” , J. Appl. Phys. 81 (12), 15 June 1997
[32]、M. Chen, Z.L. Pei, C. Sun, J. Gong, R.F. Huang, L.S. Wen,” ZAO: an attractive potential substitute for ITO in flat display panels ” , Materials Science and Engineering B85 (2001) 212–217
[33]、胡竣傑,”室溫濺鍍氧化鋅薄膜之發生特性研究”,國立中山大學電機工程學系碩士論文,(2005)。
[34]、B. G. Choi b, I. H. Kima, D. H Kimb, “Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter ” , Journal of the European Ceramic Society 25 (2005) 2161–2165
[35]、O. Yamazaki, T. Mitsuyu, and K. Wasa, IEEE Transactionson Sonics and Ultrasonics, Vol.SU-27, No. 6 (1980) 369.
[36]、M. Ohring,” The Materials Science of Thin Films” (Academic Press Inc. 1992.
[37]、L. R. Cruz, C.Legnani, I. G. Matoso, C. L. Ferreira, H. R. Moutinho, “Influence of pressure and annealing on the microstructural and electro-optical properties of RF magnetron sputtered ITO thin films” , Materials Research Bulletin (2004) 2454
[38]、甘炯耀,”ZnO之薄膜製備與發光性質研究”,國立清華大學材料科學工程學系碩士論文,(2001)。
[39]、X. Q. Wei_, B. Y. Man, M. Liu,” Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2” , Physica B 388 (2007) 145-152
[40]、Bhupendra Kumar and Hao Gong, “A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3-ZnO system” , Journal Of Applied Physics 97, 063706 (2005)
[41]、Kyung Joong Kima, Dae Won Moon ” Formation of a highly oriented FeO thin film by phase transition of Fe3O4 and Fe nanocrystallines” , Thin Solid Films 360 (2000) 118±121
[42]、J. F. Chang, H. L. Wang, M. H. Hon ” Studying of transparent conductive ZnO : Al thin films by RF reactive magnetron sputtering ” , Journal of Crystal Growth 211 (2000) 93-97
[43]、H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films” , published by Institute of Physics Publication, 1995, Chap. 3.
[44]、N. Naghavi, A. Rougier, C. Marcel, C. Guéry, J.B. Leriche, J.M.Tarascon, “Characterization of indium zinc oxide thin films prepared by pulsed laser deposition using a Zn3In2O6 target ”, Thin Solid Films 360 (2000) 233±240
[45]、G. J. Fang, D. J. Li, and B.-L. Yao “Effect of Vacuum Annealing on the Properties of Transparent Conductive AZO Thin Films Prepared by DC Magnetron Sputtering ” , phys. stat. sol. (a) 193, No. 1, 139-152 (2002)
[46]、D. V. Morgan, Y.H. Aliyu, R.W. Bunce, A. Salehi, “Annealing effects on opto-electronic properties of sputtered and thermally evaporated indium-tin-oxide films” , Thin Solid Films 312 (1998) 268-272
[47]、S. Ghosh, A. Sarkar, S. Bhattacharya, S. Chaudhuri, A. K. Pal, Journal of Crystal Growth 108 (1991) 534.
[48]、Chul-Hwan Choi, Seon-Hyo Kim “Effects of post-annealing temperature on structural, optical, and electrical properties of ZnO and Zn1_xMgxO films by reactive RF magnetron sputtering ” , Journal of Crystal Growth 283 (2005) 170–179
[49]、李玉芝,”超導物理”, 儒林出版社,(1992)
[50]、H. S. Hsu and J. C. A. Huang “Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO” , APPLIED PHYSICS LETTERS 88, 242507 (2006)
[51]、A. C. Tuan,1 J. D. Bryan,2 A. B. Pakhomov,” Epitaxial growth and properties of cobalt-doped ZnO on a-Al2O3 single-crystal substrates” , PHYSICAL REVIEW B 70, 054424 (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊