跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/26 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范文轅
研究生(外文):Wen-Yuan Fan
論文名稱:光電化學製程在氮化鎵發光二極體製作上之應用
論文名稱(外文):Application of PEC Processes for The Fabrication of GaN LEDs
指導教授:蕭宏彬
指導教授(外文):Hung-Pin Shiao
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:57
中文關鍵詞:光電化學反應n型氮化鎵表面邊璧
外文關鍵詞:photoelectrochemicaln-GaN surfacemesa sidewall
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文中,我們證明利用偏壓輔助光電化學技術能夠提升氮化銦鎵/氮化鎵發光二極體之光取出效率。偏壓輔助光電化學製程為一高反應速率且能將n型氮化鎵的表面粗化並蝕刻邊璧形成倒梯形形狀外貌的方法。表面粗化與倒梯形形狀的晶粒能夠降低內部全反射而提升其光取出效率。
在此我們使用兩種不同方向照光的光電化學反應,其一為垂直於表面照光,其二為平行於表面。利用垂直照光式光電化學法對於n型氮化鎵進行反應,能使其形成粗糙的表面;使用水平照光式光電化學反應能同時將n型氮化鎵表面進行粗化並將邊璧蝕刻形成倒梯形形狀的外貌。經由光電化學處理後的試片,我們使用掃描式電子顯微鏡以及原子力顯微鏡來觀察表面形貌,並對元件量測其電壓-電流特性曲線與電流-光輸出強度曲線。在本實驗中,嘗試改變不同的氫氧化鉀濃度與偏壓進行反應並對元件特性進行量測。
利用2V偏壓輔助於0.1M、0.5M、1M與2M的氫氧化鉀中進行垂直照光式光電化學反應,反應後其發光效率分別能提升13.4%、33.87%、47.34%與29.7%。此外,利用2V偏壓輔助於1M的氫氧化鉀中進行水平照光式光電化學反應能將發光效率提升至52.23% 。
In this thesis, we have demonstrated the enhancement in light extraction efficiency of InGaN/GaN LEDs using bias-assisted photoelectrochemical (PEC) technology. The bias-assisted PEC process with high reaction rate can be used to rough n-GaN surface and etch mesa sidewall for the formation of truncated-inverted-pyramid (TIP) shape. Both the surface roughness and TIP shape will benefit the light extraction efficiency due to the reduction of total internal reflection.
In this experiment, there are two directions for PEC reactions. One is normal to surface and the other is parallel to surface. Surface roughness on n-GaN can be obtained using PEC process with normal to surface illumination. Both surface roughness and TIP shape can be achieved using PEC process with parallel surface illumination. All processed samples were examined by scanning electronic microscopy (SEM) and atomic force microscopy (AFM). Both I-V and L-I curves for before and after PEC processed LEDs were tested. Various of different KOH concentrations and bias voltages have been studied in this work.
The output power can be enhanced by 13.4%, 33.87%, 47.34% and 29.7%, respectively, for the PEC-processed LEDs with 0.1M, 0.5M, 1M and 2M KOH solution and 2-V bias under normal to surface illumination. On the other hand, the output power can be increased by 52.23% for the PEC-processed LEDs with 1M KOH solution and 2-V bias under parallel illumination.
封面內頁
簽名頁
授權書.........................iii
中文摘要........................iv
英文摘要.......................v
誌謝..........................vi
目錄..........................vii
圖目錄.........................ix
表目錄.........................xii

第一章 序論......................1
1.1 前言....................1
1.2 氮化鎵材料簡介...............2
1.3 氮化鎵發光二極體演進............5
1.4 發光二極體原理與介紹............7
1.5 研究動機與背景...............9
第二章 光電化學反應..................12
2.1 濕式蝕刻..................12
2.2 乾式蝕刻..................14
2.3 光電化學原理................17
第三章 實驗步驟....................21
3.1 試片結構..................21
3.2 製程步驟..................22
3.3 光電化學製程................24
第四章 結果與討論...................27
4.1 n型電極平台表面與邊壁之形貌分析.......27
4.2 元件之電壓-電流特性與發光效率........41
第五章 結論......................52
參考文獻........................53
[1]S. Nakamura, M. Senoh, and T. Mukai, “ High-power InGaN/GaN double-heterostructure violet light emitting diodes, ” Appl. Phys. Lett. , vol.62, pp. 2390, 1992.
[2]M. Hansen, J. Piprek, P. M. Pattison, J. S. Speck, S. Nakamura, and S. P. DenBaars ,“ Higher efficiency InGaN laser diodes with an improved quantum well capping configuration, ” Appl. Phys. Lett. , vol.81, pp. 4520, 2002.
[3]K. S. Stevens, M. Kinniburgh, and R. Beresford, “ Photoconductive ultraviolet sensor using Mg-doped GaN on Si(111), ” Appl. Phys. Lett. , vol.63, pp. 3518, 1995.
[4]A. F. M. Anwar, Richard T. Webster, and Kurt V. Smith, “ Bias induced strain in AlGaN/GaN heterojunction field effect transistors and its implications, ” Appl. Phys. Lett. , vol. 88, pp. 203510, 2006.
[5]J. Chen, J. F. Wang, H. Wang, J. J. Zhu, S. M. Zhang, D. G. Zhao, D.S. Jiang, H. Yang, U. Jahn and K. H. Ploog, “ Measurement of threading dislocation densities in GaN by wet chemical etching, ” Semicond. Sci. Technol. , vol. 21 pp. 1229–1235, 2006.
[6]S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates, ” Appl. Phys. Lett. , vol. 42, pp. 427-429, 1983.
[7]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “ Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, ” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
[8]M. Hao, S. Mahanty, T. Sugahara, Y. Morishima, H. Takenaka, J. Wang, S. Tottori, K. Nishino, Y. Naoi, and S. Sakai, “ Configuration of dislocations in lateral overgrowth GaN films, ” J. Appl. Phys. , vol. 85, pp. 6479-6507, 1999.
[9]E. Fred Schubert, Light-Emitting Diodes, Cambridge University Press, pp. 15-22, 2006.
[10]T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “ III-nitride blue and ultraviolet photonic crystal light emitting diodes, ” Appl. Phys. Lett. , vol. 84, pp. 466-468, 1999.
[11]Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang , T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “ Nano-roughening n-side surface of AlGaInP-based LEDs for increasing extraction efficiency, ” Materials Science and Engineering B, vol. 138, pp. 157-160, 2007.
[12]Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “ Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates, ” IEEE Photonics Technology Letters, vol. 18, pp. 1152-1154, 2006.
[13]M. R. Krames, M. Ochiai-Holcomb, G. E. HÖfler, C. Carter-Coman, E. I. Chen, I.- H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser and D. Collins, “ High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light- emitting diodes exhibiting > 50% external quantum effciency, ” Appl. Phys. Lett. , vol. 75, pp. 2365-2367, 1999.
[14]J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C. J. Yoon, and H. J. Lee, “ Bias-assisted photoelectrochemical oxidation of n-GaN in H2O, ” Appl. Phys. Lett. , vol. 81, pp. 1029-1031, 2002.
[15]Z. H. Hwang, J. M. Hwang, H. L. Hwang, and W. H. Hung, “ Electrodeless wet etching of GaN assisted with chopped ultraviolet light, ” Appl. Phys. Lett. , vol. 84, pp. 3759-3761, 2004.
[16]莊達人,VLSI製造技術,高立圖書有限公司,1996.
[17]S. k. Ghandhi, VLSI Fabrication Principles, John Wiley & Sons, p.613, 1994.
[18]S. J. Fonash, “Advances in Dry Etching Processes-A Review,” Solid State Technology, pp. 150, 1985.
[19]劉博文,ULSI製造技術,新文京開發出版有限公司,2003.
[20]C. Youysey, I. Adesida , L.T. Romano, and G. Bulman, “ Smooth n-type GaN surface by photoenhanced wet etching, ” Appl. Phys. Lett. , vol. 72, pp. 560-562, 1997.
[21]T. Rotter, D. Mistele, F. Fedler, J. Aderhold, J. Graul, and M.Heuken, “ Photoinduced oxide film for mation on n-type GaN surfaces using alkaline solution, ” Appl. Phys. Lett. , vol. 76, pp.3923-3925, 2000.
[22]L. Y. Chang, “ Etching Study of GaN by Photoelectrochemical Reaction Method, ” Department of Electrical Engineering, Da-Yeh University, June, 2006.
[23]D. J. Fu, Sh. U. Yuldashev, Y. H. Kwon, N. H. Kim, S. H. Park and T. W. Kang, “ Photoelectrochemical Oxygenation of GaN Epilayers, ” Journal of the Korean Physical Society, Vol. 39, pp. S313-S317, 2001.
[24]J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. VanHove, A. Wowchak, and H. Morkoc, “ Bias-assisted photoelectrochemical etching of p-GaN at 300K, ” Appl. Phys. Lett. , vol. 77, pp. 1227-1229, 2000.
[25]Chia-Feng Lin, Jing-Hui Zheng, Zhong-Jie Yang, Jing-Jie Dai, Der-Yuh Lin, Chung-Ying Chang, Zhao-Xu Lai, and C. S. Hong, “ High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure, ” Appl. Phys. Lett. , vol. 88, pp. 083121, 2006.
[26]A. P. Vajpeyi, S. J. Chua, S. Tripathy, E. A. Fitzgerald, W. Liu, P. Chen, and L. S. Wang “ High optical quality nanoporous GaN prepared by photoelectrochemical etching, ” Electrochem. Solid-State Lett. , vol. 8, pp. G85-G88, 2005.
[27]J. M. Hwang, J. T. Hsieh, H. L. Hwang, and W. H. Hung, “ A damage-reduced process revealed by photoluminescence in photoelectrochemical etching GaN, ” MRS Internet J. Nitride Semicond. , Res. 5S1, W11. 73, 2000.
[28]C. C. kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu and C. F. Lin, “ Light-output enhancement in a nitride-based light-emitting diode with 22° undercut sidewalls, ” IEEE Photonics Technology Letters, vol. 17, pp. 19-21, 2005.
[29]C. F. Lin, J. J. Dai1, R. H. Jiang, J. H. Zheng, Z. J. Yang, C. C. Yu, and W. C. Lee, “ Photoelectrochemical sidewall etching enhances light output power in GaN-based light emitting diodes, ” Phys. stat. sol. , vol. 3, pp. 2182-2186, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文