跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 07:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭庭榮
研究生(外文):Ting Jung Kuo
論文名稱:以核磁共振影像研究糖尿病患的主動脈血流脈波傳導速率(Part1)、以核磁共振影像研究體外主動脈壁面剪應力特性(Part2)
論文名稱(外文):Quantification of Pulse Wave Velocity of Aorta of Diabetic Patients with Phase Contrast Magnetic Resonance Imaging(Part 1)In Vitro Study of Aortic Wall Shear Stress with Phase Contrast Magnetic Resonance Imaging (Part 2)
指導教授:溫志湧楊安石楊安石引用關係
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:順應性血流脈波傳導速率核磁共振儀糖尿病主動脈壁面剪應力主動脈弓無滑動邊界條件
外文關鍵詞:CompliancePulse Wave VelocityPhase Contrast MRIDiabetesAortaWall Shear StressAortic archNo Slip Boundary Condition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩個部份第一部份為“以核磁共振影像研究糖尿病患的主動脈血流脈波傳導速率”;第二部份為“以核磁共振影像研究體外主動脈壁面剪應力特性”。
  在第一部分的研究,主動脈的順應性是心臟負荷的重要決定因子,它也是臨床上糖尿病患與高血壓病患長期預防治療追蹤的重要預測指標,而主動脈的血流脈波傳導速率則可視為主動脈順應性的代名詞。本研究主要將以氣體動力學裡的波動理論,建構一套全新的非侵入式方法,用來預估主動脈的血流脈波傳導速率。研究中將針對健康志願者與糖尿病患者,以核磁共振儀來取得他們矢狀切面上主動脈的幾何參數與流場資訊,藉由分析胸腔主動脈軸心速率在空間與時間上的變化波型,求得主動脈的血流脈波傳導速率與順應性。研究結果顯示正常人的平均脈波傳導速率(Pulse Wave Velocity,PWV )為6.49±1.49 m/s,主動脈順應性為6.58m3s2/kg;糖尿病患者的平均PWV為12.76±0.66 m/s主動脈順應性則為 1.57 m3s2/kg。由此可知糖尿病患者的PWV值遠大於正常人,血管硬化程度嚴重。期望藉由MRI此一非侵入式方法,準確地預估主動脈順應性與血流脈波傳導速率,同時研究成果可以建立一臨床指標來評估糖尿病患心血管疾病發生的風險性,使人類生活更健康。
在第二部份的研究,壁面剪應力(Wall Shear Stress,WSS)乃心血管疾病的重要預測因子之ㄧ,因此本研究藉由核磁共振影像,取得人體主動脈模型在心臟循環狀況下流體的速度分佈,觀察壁面剪應力對主動脈的影響。實驗的進行將分為三個部份:(1)圓直管實驗;(2)體外主動脈模型穩態實驗;(3)體外主動脈模型暫態實驗。藉由圓直管實驗驗證以流體力學“無滑動邊界條件”為基礎的邊界搜尋方法是否正確;而以MRI可獲得流體速度分佈的特性,觀察流體在主動脈模型內流場的變化,與壁面剪應力在主動脈模型分佈的情形。研究顯示在主動脈弓內側壁面,有明顯的壁面剪應力變化;而在下行主動脈外側壁面亦有明顯的壁面剪應力變化發生。此研究未來可進一步應用於人體上,觀察人體主動脈的壁面剪應力變化,作為心血管疾病的預防機制,使人類生活更健康。
This thesis consists of two parts. Part I of this thesis is “Quantification of pulse wave velocity of aorta of diabetic patients with phase contrast magnetic resonance imaging.” Part II is ”In-vitro study of aortic wall shear stress with phase contrast magnetic resonance imaging.”
In Part I, Compliance of the aorta is an important factor of heart load and a clinically predictor of long-term prognosis in patients with diabetes mellitus and hypertension. Pulse wave velocity (PWV) of aortic blood flow is considered a surrogate for aortic compliance. In this study, a new, noninvasive method to estimate PWV based on the wave theory in gasdynamics were developed, in which spatial and temporal profiles of axial velocity along the thoracic aorta were analyzed. Phase contrast MRI (PC-MRI) were used to obtain the aortic geometry and flow information in the sagittal plane. Healthy volunteers and diabetic patients were studied and compared. Correlation studies were conducted with statistics. Furthermore, aortic compliance were derived from PWV. It is show that the PWV and aortic compliance for health volunteers were 6.49±1.49 m/s and 6.58 m3s2/kg respectively. On the other hand, the PWV and aortic compliance were 12.76±0.66 m/s and 1.57 m3s2/kg respectively, for diabetic patients, The PWV of diabetic patients are much higher than that of health volunteers. The aortic compliance of diabetic patients is worse than that of health volunteers. A clinically useful index to assess cardio-vascular risk is established.
In Part II, wall shear stress is an important prediction of the cardiovascular disease. In this study, we used MRI to obtains the velocity distribution along the aortic model under simulated the heart circulation condition, and observed the influences of wall shear stresses on the aortic model. The experiments were divided into three parts: (1) A circular pipe flow experiment; (2)Steady in-vitro experiment on aortic model; (3) Unsteady in-vitro experiment on aortic model. In the circular pipe flow experiment, we true to validate the vessel-wall searching method based on “no slip boundary condition” of the fluid mechanics. The preliminary result is promising. In the steady and unsteady in-vitro experiments on aortic model, the newly developed vessel-wall searching method was adopted to determine the correct wall positions and wall shear stresses. The research demonstrated that on the inner wall surface around the aortic arch, the wall shear stress has changed significantly; It similar situation happens on outer wall surface along the descending aorta . The results are consistent with the early investigations in many literatures.
目錄

封面內頁
簽名頁
授權書                         iii
中文摘要                        iv
英文摘要                        vi
誌謝                         viii
目錄                         ix
圖目錄                        xii
表目錄                     xiv

第一部份     1
第一章 緒論                    2
1.1 研究背景               2
1.2 文獻回顧               4
1.2.1 糖尿病              4
1.2.2 脈波傳導速度           6
1.3 研究目的               11
第二章 研究架構與方法              12
2.1 MRI影像               12
2.2 MRI相位補償誤差校正         13
2.3 三維脈波傳導分布圖          14
2.4 PWV計算               16
2.5 主動脈順應性          17
第三章 結果與討論              18
3.1 正常人                18
3.2 糖尿病患者               19
第四章 結論                    21
參考文獻                      22

第二部份                      26
第一章 緒論                    27
1.1 研究背景               27
1.2 文獻回顧               29
1.2.1 壁面剪應力           29
1.2.2 核磁共振影像          31
1.3研究目的                33
第二章 研究架構與方法              34
2.1 實驗平台               34
2.2 實驗方法               38
2.3 MRI設定參數             39
2.4 邊界搜尋               41
2.5 剪應力計算             45
第三章 結果與討論                46
3.1 圓直管實驗              46
3.2 流量與壓力              49
3.3 體外主動脈模型穩態實驗        51
3.4 體外主動脈模型暫態實驗        54
第四章 結論                    58
參考文獻                     59
附錄                     63
Part I
[1]  國民健康局網站:http://www.bhp.doh.gov.tw/BHP/index.jsp ,民國93年4月。
[2]  行政院衛生署網站:http://www.doh.gov.tw/statistic/index.htm , 民國94年。
[3]  Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation 2002; 106(16):2085-2090.
[4]  Stergiopulos N, Segers P, Westerhof N. Use of pulse pressure method for estimating total arterial compliance in vivo. Am J Physiol 1999; 276:H424-H428.
[5]  Bogren HG, Mohiaddin RH, Klipstein RK,Firmin DN, Undrwood RS, Rees SR, Longmore DB. The function of the aorta in ischemic heart disease: a magnetic resonance and angiographic study of aortic compliance and blood flow patterns. Am Heart J 1989; 118:234-247.
[6]  Groenink M, de Roos A, Mulder BJ, Spaan JA, van der Wall EE. Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the Marfan syndrome. Am J Cardiol 1998; 82:203-208.
[7]  Heintz B, Gillessen T, Walkenhorst F., vom Dahl J, Dorr R, Krebs W, Hanrath P, Sieberth HG. Evaluation of segmental elastic properties of the aorta in normotensive and medically treated hypertensive patients by intravascular ultrasound [erratum published in J Hypertens 1993; 11:following H71]. J Hypertens 1993; 11:1253-1258.
[8]  Honda T, Yano K, Matsuoka H, Hamada M, Hiwada K. Evalu- ation of aortic distensibility in patients with essential hypertension by using cine magnetic resonance imaging. Angiology 1994; 45:207-212.
[9]  Mohiaddin RH, Firmin DN, Longmore DB. Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging. J Appl Physiol 1993;74:492-497.
[10] Resnick LM, Militianu D, Cunnings AJ, Pipe JG, Evelhoch JL, Soulen RL. Direct magnetic resonance determination of aortic distensibility in essential hypertension: relation to age, abdominal visceral fat, and in situ intracellular free magnesium. Hypertension 1997; 30:654-659.
[11] Franklin SS, Khan SA, Wong ND, Larson MG, Levy D. Is pulse pressure useful in predicting risk of coronary heart disease? The Framingham heart study. Circulation 1999; 100:354-360.
[12] The American Diabetes Association:Report of Expert Committer on the diagnosis and Classification of diabetes mellitus.Diabetes Care 1997;20:1183-1197.
[13] Cameron JD, Bulpitt CJ, Pinto ES, Rajkumar C. The aging of elastic and muscular arteries: a. comparison of diabetic and non-diabetic subjects. Diabetes Care 2003; 26: 2133-8.
[14] Ohnishi H, Saitoh S, Takagi S, Ohata J, Isobe T, Kikuchi Y, Takeuchi H, Shimamoto K. Pulse wave velocity as an indicator of atherosclerosis in impaired fasting glucose: the Tanno and Sobetsu study. Diabetes Care, February 1, 2003; 26(2): 437-440.
[15] Tsuchiya M, Suzuki E, Egawa K, Nishio Y, Maegawa H, Morikawa S, InubushiT, Kashiwagi A. Abnormal peripheral circulation in type 2 diabetic patients with normal ankle-brachial index associates with coronary atherosclerosis, large artery stiffness, and peripheral vascular resistance. Diabetes Research and Clinical Practice 70 (2005) 253-262
[16] Liu ZR, Ting CT, Zhu SX, Yin FC. Aortic compliance in human hypertension. Hypertension 1989;100:354-360.
[17] Stefanadis C, Stratos C, Vlachopoulos C, Marakas S, Boudoulas H, Kallikazaros I, Tsiamis E, Toutouzas K, Sioros L, Toutouzas P. Pressure-diameter relation of the human aorta. A new method of determination by the application of a special ultrasonic dimension catheter. Circulation 1995;92:2210-2219.
[18] Vulliemoz S, Stergiopulos N, Meuli R. Diagnostic and Inter- ventional Radiology Department, CHUV, Lausanne, Switzerland. Estimation of local aortic elastic properties with MRI Magn. Reson Med. 2002;47:649-654.
[19] Laffon E, Marthan R, Montaudon M, Latrabe V, Laurent F, Ducassou D. Feasibility of aortic pulse pressure and pressure wave velocity with MRI measurement in young adults. J Magn Reson Imaging 2005;21(1):53-58.
[20] Boese JM, Bock M, Schoenberg SO, Schad LR. Estimation of aortic compliance using magnetic resonance pulse wave velocity measurement. Phys. Med. Biol. 2000;45(6):1703-1713.
[21] Danias PG, Tritos NA, Stuber M, Botnar RM, Kissinger KV, Manning WJ. Comparison of aortic elasticity determined by cardiovascular magnetic resonance imaging in obese versus lean adults. Am J Cardiol 2003;91(2):195-199.
[22] Yu, H.Y., Peng, H.Y., Wang, J.L., Wen, C.Y., and Tseng, W.Y., “Quantification of the Pulse Wave Velocity of the Descending Aorta Using Axial Velocity Profiles from Phase-Contrast Magnetic Resonance Imaging,” Magnetic Resonance in Medicine, Vol. 56, pp 876-883, 2006.
[23] Anderson, Jr. JD. Modern Compressible Flow, 2nd ed., McGraw Hill, 2000.
[24] Yu, H. Y., Pung, H. S., Wen, C. Y., Wang, J. L. and Tseng, W. Y., “DirectVisualization of Pulse Wave Velocity of Aorta by Phase Image of Cine-MRI,”Proceedings of ISMRM 11th annual meeting, 5/13, Toroto, Canada, 2003.
[25] Lankhaar, J. W., Hofman, M. B. M., Mrcus, J. T., Zwanenburg, J. J. M., Faes, T. J. C., Noordegraaf, A. V., “Correction of Phase Offset Errors in Main Pulmonary Artery Flow Quantification.” Journal of Magnetic Resonance Imaging. 22:73-79, 2005.
[26]  Rogers W.J, Hu Y.L., Coast D., Vido D.A., Kramer C.M., Pyeritz R.E. and Reichek N., Age-associated changes in regional aortic pulse wave velocity. J Am Coll Cardiol 38 (2001), pp. 1123–1129.
[27] Tsuchiya M, Suzuki E, Egawa K, Nishio Y, Maegawa H, Morikawa S, Inubushi T, Kashiwagi ,.Abnormal peripheral circul- ation in type 2 diabetic patients with normal ankle-brachial index associates with coronary atherosclerosis,large artery stiffness,and peripheral vascular resistance. Diabetes Res Clin Pract,2005,70(3), 253-262.
[28] Ohnishi H., Saitoh S., Takagi S., Ohata J.-I., Isobe T., Kikuchi Y., Takeuchi H., Shimamoto K. , Pulse wave velocity as an indicator of atherosclerosis in impaired fasting glucose:the Tanno and Sobetsu study[J].Diabetes-Care, 2003,26(2):437-440.
[29] Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, Koji Y, Hori S, Yamamoto Y. ,Validity,reproducibility and clinical significance of non-invasive brachial-ankle pulse wave velocity measurement.Hypertens Res,2002,25:359-364

PartII

[1]  行政院衛生署網站:http://www.doh.gov.tw/statistic/index.htm ,民國94年。
[2]  Sahs, A L.,“Observations on the Pathology of Saccular Aneur- ysms.” J. Neurosurg. 24:79-806, 1996.
[3]  Anderson CM, Turski PA, Edelman RR. Flow quantification. In: Anderson CM, Edelman RR, Turski PA, eds. Clinical magnetic resonance angiography. New York: Raven, 1993:127 -128
[4]  Taxon M. Hemodynamic basis of atherosclerosis with critique of the cholesterol-heart disease hypothesis . Wallingford, U.K.: Begell House, 1995 :48–49
[5]  Oyre S, Ringgard S, Erlandsen M, et al. Automatic Accurate In Vivo Determinations of Blood Flow, Wall Shear Stress and Subpixel Vessel Wall Position in the Common Carotid Artery Throughout the Entire Heart Cycle by MRI (abstract). In 70th Scientific Sessions of the American Heart Association; 1997 Nov 10-14; Orlando, USA Circulation. 1997; 96 (8 Suppl): I-50.
[6]  Grigioni M, Marano G, Formigari R, et al. Wall shear stress swing and the development of intimal hyperplasia in rabbit carotid artery (abstract). In Proceedings of the XXV European Society for Artificial Organs ESAO Congress, 1998 Nov 1113; Bologna, Italy. Int J Artif Organs. 1998; 21: 619.
[7]  Liepsch D, Pflugbeil G, Matsuo T, et al. Flow visualization and 1and 3D laserDoppleranemometer measurements in models of human carotid arterie. Clin Hemorheol Microcirc. 1998; 18: 130.
[8]  Oyre S., Pedersen E. M., Ringgaard S., Boesiger P. and Paaske W. P., In vivo Wall Shear Stress Measured by Magnetic Resonance Velocity Mapping in the Normal Abdominal Aorta. Eur J Vasc Endovasc Surg 13, 263-271,1997
[9] James E. Moore Jr., Chengpei Xu, Seymour Glagov, Christopher K. Zarins, David N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110, 225-240,1994
[10] Gnasso A, Carallo C, Irace C, Spagnuolo V, De Novara G, Mattioli PL, Pujia A. Association between intima-media thickness and wall shear stress in the common carotid arteries in healthy male subjects. Circulation. 1996;94:3257–3262.
[11] Zhao S.Z., Xu X.Y., Hughes A.D., Thom S.A., Stanton A.V., Ariff B.,Long Q., Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation, Journal of Biomechanics, Vol:33, 975-984,2000
[12] 朱偉光,人體主動脈剪力分佈之數值模擬與分析,私立中華大學機械與航太研究所碩士論文,民國九十一年。
[13] Uwe Kohler, Ian Marshall, Malcolm B. Robertson, Quan Long, X. Yun Xu, and Peter R. Hoskins, MRI Measurement of Wall Shear Stress Vectorsin Bifurcation Models and Comparison With CFD Predictions. Journal of Magnetic Resonance Imaging, Vol:14, 563-573,2001
[14] Klanchar, M., Tarbell, J.M. and Wang, D.M., 1990. In vitro study of the influence of radial wall motion on wall shear stress in an elastic tube model of the aorta. Circulation Research ,Vol. 66, pp. 1624–1635.
[15] Zhaoa, S. Z., Ariffb, B., Longa, Q., Hughesb, A. D., Thomb, S. A., Stantonb, A. V., Xua, X. Y., “Inter-individual Variations in Wall Shear Stress and Mechanical Stress Distributions at the Carotid Artery Bifurcation of Healthy Humans.” Journal of Biomechanics. 35:1367–1377, 2002.
[16] Marshalla, I., Zhaob, S., Papathanasopouloua, P., Hoskinsa, P., Xub, X. Y., “MRI and CFD Studies of Pulsatile Flow in Healthy and Stenosed Carotid Bifurcation Models.” Journal of Biomechanics. 37:679–687, 2004.
[17] Hugo G., Bogren, MD and Michael H. Buonocore, MD,4D Magnetic Resonance Velocity Mapping of Blood Flow Patterns in the Aorta in Young vs. Elderly Normal Subjects. Journal of Magnetic Resonance Imaging, Vol:10, 861-869,1999
[18] Hugo G., Bogren, MD, Richard H. Klipstein, MB, PhD, David N. Firmin, BSc, Mphil, Raad H. Mohiaddin, MB, MSc, S. Richard Underwood, DM, MRCP, R. Simon O Rees, FRCP, FRCR, and Donald B. Longmore, FRCS. London, England, American Heart Journal, vol. 117, no. 6, pp.1214-1222,1989
[19] 廖大煜,利用連續磁振造影及壓力換能器發展一套左心腔室之體積與壓力量測系統,國立臺灣大學醫學工程學研究所碩士論文,民國九十一年。
[20] 莊家銘,二維圖樣特徵偵測-以磁振左心室影像及其特徵搜尋為案例,私立大葉大學工業工程學系碩士論文,民國九十年。
[21] 陳文哲,二維影像輪廓自適性分割與三維影像流向重建—以磁振肝門靜脈影像處理為案例,私立大葉大學工業工程學系碩士論文,民國九十一年。
[22] Oyre, Sten; Ringgaard, Steffen; Kozerke, Sebastian; Paaske, William P.; Erlandsen, Mogens;. Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data. Journal of the American College of Cardiology. Vol: 32, Issue: 1, pp. 128-134, 1998
[23] 劉清吉,人體主動脈流場之特性研究,私立大葉大學機械與自動化工程學系碩士論文,民國九十三年。
[24] 蔡坤晃,主動脈剝離現象之流場分析,私立大葉大學機械與自動化工程學系碩士論文,民國九十四年。
[25] Francis, J. G. F., “The QR Transformation I,” Comput. J., vol. 4:265-271, 1961.
[26] Nerem, R. M., “Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis,” J. Biomech. Eng., 114:274–282, 1992.
[27] Shahcheraghi, N., Dwyer, H. A., Cheer, A. Y., Barakat, A. I., Rutaganira, T., “Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch,” Journal of Biomechanical Engineering. Vol. 124, 378-387, 2002.
[28] Murray R. Spiegel,Vector Analysis,滄海書局,民國八十五年。
[29] Miller, G.E., Etter, B.D., and Dorsi, J., A Multiple Disk Centrifugal Pump as a Blood Flow Device, IEEE Transactions on Biomedical Engineering, vol. 37, no. 2, pp. 157-163, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top