跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許瑋升
研究生(外文):W.S. Hsu
論文名稱:利用固相置換反應於燃燒合成硼化鉬與其複合材料之研究
論文名稱(外文):Formation of Molybdenum Borides and Their Composites by Combustion Synthesis with Solid-phase Displacement Reactions
指導教授:葉俊良葉俊良引用關係
指導教授(外文):C.L. Yeh
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:58
中文關鍵詞:自持傳遞高溫合成法置換反應火焰鋒面傳遞模式火焰鋒面傳遞速度燃燒合成溫度
外文關鍵詞:Molybdenum boridesSHSDisplacement reactionFlame-front velocityCombustion temperature
相關次數:
  • 被引用被引用:1
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究係以自持傳遞高溫合成法(Self-propagate -ing High temperature Synthesis,SHS)於充滿氬氣環境燃燒室中燃燒合成硼化鉬(MoB)並結合MoO3與硼的固相置換反應進行硼化鉬Mo2B、MoB2、Mo2B5、MoB4四種化合物的燃燒合成,並探討其燃燒反應之特性,研究其在氬氣壓力0.136 MPa、試片密度為40%最大理論密度時,其火焰鋒面傳遞模式、火焰鋒面傳遞速度、燃燒合成溫度以及合成產物之影響與其複合材料各組態硼化鉬與氧化鋁、MoB-MoSi2與MoSi2-Al2O3三種複合材料之結合,探討其燃燒反應之特性。實驗結果顯示以SHS合成MoB之燃燒反應,其火焰鋒面為平整穩定地傳遞模式,而藉由影像觀察之結果顯示出火焰鋒面於預熱溫度較高的情形下試片會產生二次燃燒的現象,並且在預熱溫度越高的情形下其火焰鋒面傳遞速度會有逐漸增加地趨勢,而合成Mo2B、MoB2、Mo2B5、MoB4之燃燒反應其火焰傳遞模式為一平整的火焰鋒面穩定地向下傳遞,而藉由影像觀察之結果發現試片會有明顯的膨脹現象與煙霧狀物質產生。而其火焰鋒面傳遞速度皆隨著試片中硼化鉬組態之莫耳分率的提高,而有逐漸下降的趨勢,這是因為在相對情形下置換反應中MoO3含量相對遞減的情形下,反應放熱能量變小,使其鋒面傳遞速度也隨著下降。而燃燒反應之最高燃燒溫度也隨著試片中硼化鉬莫耳分率的下降,而有逐漸上升的趨勢,與火焰鋒面傳遞速度有相對應的關係。四種組態中最高燃燒溫度最高的為MoB2,其次則為Mo2B最低的是Mo2B5而MoB4的實驗反應因為產物的生成大部分為Mo2B5所以其燃燒溫度與Mo2B5的實驗接近。利用XRD分析產物的結果中我們可以知道利用置換反應在生成MoB2與Mo2B5兩種產物的成果最好,而在生成Mo2B方面則會有大量的Mo殘留與生成些許的α-MoB,而於合成MoB4方面,雖然提高其莫耳分率但主要產物卻都是Mo2B5,僅能生成少許的MoB4,三種產物的生成皆會有隨著莫耳分率的提高而有逐漸變好的趨勢。
An experimental study on formation of molybdenum boride (MoB)was conducted by self-propagating high- temperature synthesis (SHS) using compacted samples from elemental powder mixtures. Upon ignition, the reaction was characterized by a planar combustion front propagating along the sample in a self-sustaining manner. In the synthesis of monolithic MoB, effects of the initial sample density and preheating temperature on combustion characteristics and the composition of final products were studied. Flame-front propagation velocity and combustion temperature were found to increase with initial sample temperature and density. Based upon the measured data, the activation energy of combustion synthesis of MoB was determined as 80.44 kJ/mol. For the reactant compacts with Mo:B = 1:1, the XRD analysis identified formation of α-MoB as the dominant phase and Mo2B as the intermediate phase.Formation of molybdenum borides of four different phases, including Mo2B, MoB2, Mo2B5, and MoB4, was performed by self-propagating high-temperature synthesis (SHS) from the reactant compacts composed of MoO3, Mo, and B powders. The solid-phase displacement reaction of MoO3 with boron was involved in the SHS process. The effect of starting stoichiometry on flame-front propagation velocity, combustion temperature, and product composition was studied. In all cases, experimental observations show a planar reaction front propagating in a stable and self-sustaining manner. During the reaction, misty boron oxide in the form of small liquid droplets was produced in the displacement reaction and ejected from the sample. Thus, the end product was significantly expanded. A decrease in the displacement reaction taking place during the SHS process reduces the heat flux to the synthesis reaction, thus resulting in lower combustion temperatures and reaction front velocities. The highest combustion temperature was observed in the synthesis of MoB2, followed by Mo2B. The reaction temperature of Mo2B5 is comparable to that of MoB4. Based upon the XRD analysis, formation of MoB2 and Mo2B5 as the dominant boride phases in the end products was successful. It was found a large amount of Mo left in the synthesis of Mo2B. However, the powder compact prepared for the production of MoB4 yielded mostly Mo2B5.
目錄

封面內頁
簽名頁
授權書
中文摘要
英文摘要
誌謝
目錄
圖目錄
表目錄
符號說明

第一章 緒論
1.1 研究背景
1.2 文獻回顧
1.2.1 自持傳遞燃燒高溫合成法相關文獻
1.2.2 硼化鉬之相關文獻
1.2.3 置換反應之相關文獻
1.2.4 氧化鋁之相關文獻
1.2.5 矽化鉬之相關文獻
1.3 研究目的
第二章 實驗方法
2.1 試片
2.1.1 硼化鉬燃燒合成
2.1.2 各組態硼化鉬與Al2O3複合材料合成
2.1.3 MoB-MoSi2複合材料燃燒合成
2.1.4 MoSi2-Al2O3複合材料燃燒合成
2.2 燃燒室主體
2.3 資料擷取系統
2.4 影像擷取系統
2.5 產物分析
第三章 結果與討論
3.1 燃燒合成不同組態硼化鉬
3.1.1 MoB
3.1.1.1 固相火焰觀察
3.1.1.2 火焰傳遞速度
3.1.1.3 溫度量測
3.1.1.4 產物活化能與分析
3.1.2 Mo2B、MoB2、Mo2B5與MoB4
3.1.2.1 固相火焰觀察
3.1.2.2 火焰鋒面傳遞速度與溫度
3.1.2.3 產物分析
3.2 燃燒合成複合材料
3.2.1 硼化鉬與Al2O3複合材料
3.2.1.1 固相火焰探討
3.2.1.2產物分析
3.2.2 MoB-MoSi2複合材料
3.2.3 MoSi2-Al2O3複合材料
第四章 結論
參考文獻
附錄
[1] D.R. Askeland, P.P. Phule, “The Science and Engineering of
Materials Fourth Edition,”2005.
[2] Z.A. Munir, U.A. Tamburini, “Self - Propagating Exothermic
Reactions; The Synthesis of High- Temperature Materials by
Combustion,” Mater. Sci. Rep., Vol. 3, pp. 227-365, 1989.
[3] Y. Choi, S. Rhee, “Effect of Precursors on the Combustion
Synthesis of TiC-Al2O3 Composite,” J. Mater. Res., Vol. 9, No.
7, pp. 1761-1766, 1944.
[4] 李弘斌,“高溫材料之自行燃燒合成反應的參數探討”,行政院國家科學委會,NSC85- 2216-E-228-001,1996.
[5] 李弘斌, “粉末冶金的新發展-自行燃燒合成反應”,美國辛辛那提大學國際微熱研
究中心.
[6] M.N. Mungole, R. Balasubramaniam, A. Ghosh., “Oxidation behavior
of titanium aluminides of high niobium content,” Intermetallics,
Vol. 8, pp. 717-720, 2000.
[7] B.M. Warnes., N.S. DuShane, J.E.Cockerill., “Cyclic oxidation of
diffusion aluminide coatings on coalt base super alloys,”
Surface Coatings Technol., Vol. 148, pp. 163-170, 2001.
[8] A. G.,Merzhanov, “Solid Flames: Discoveries, Concepts, and
Horizons of Cognition,” Combustion Science and Technology, Vol.
98, pp. 307-336, 1994.
[9] J. J. Moore, and H. J. Feng, “Combustion Synthesis of Advanced
Materials: Part I. Reaction Parameters,” Progress in Materials
Science, Vol. 39, pp. 243-273, 1995.
[10] J. J. Moore, and H. J. Feng, “Combustion Synthesis of Advanced
Materials: Part II.Classification, Applications and Modeling,”
Progress in Materials Science, Vol. 39, pp. 275-316, 1995.
[11] A. Makino, “Fundamental Aspects of the Heterogeneous Flame in
the Self-propagating High-temperature Synthesis (SHS) Process,”
Progress in Energy and Combustion Science, Vol. 27, pp. 1-74,
2001.
[12] H. Kudo, O. Odawara, “Characteristics of Self-Propagating
Reaction in TiN Combustion Synthesis,” J. Mater. Sci., 24, pp.
4030-4033, 1989.
[13] A.G. Merzhannov, and I. P. Borovinskaya, “Self-Propagation High- Temperature Synthesis of Refractory Inorganic Compounds,”
Doklady Akademii Nauk USSK, Vol. 204, No. 2, pp. 366-369, 1972.
[14] 李弘斌,“利用固體燃燒的材料製成法:自行傳播燃燒反應,”1996.
[15] B. Aronsson., T. Lundstrom., and S. Rundqvsit, Borides,
Silic.ide.s and Phosphides: A Criticul review of their
Preparation and Crystal Chemistry.Metheun and Co., Ltd, London.
1965.
[16] R.A. Cutler., ‘‘Ceramics and Glasses-Engineered Materials
Handbook’’. Vol. 4. ed. S. J. Schneider, Jr, ASM
International: Materials Park. USA. 1991, p. 787.
[17] A.C. Silva, and M. J. Kaufman, ‘‘Synthesis of MoSi2- boride
composites through in situ displacement reactions’’
Intermetallics., Vol 5, pp 1-15, 1997.
[18] A.W. Weimer (Ed.), Carbide, Nitride and Boride Materials
Synthesis and Processing, Chapman and Hall, London, 1997, p. 3.
[19] L. L. Wang, Z. A. Munir, Y. M. Maximov, ‘‘Review Thermite
reactions: their utilization in the synthesis and processing of
materials’’ J. Mater. Sci., Vol. 28 pp. 3693-3708, 1993.
[20] R. Subramanian, C.G. McKamey, L.R. Buck, J.H.
Schneibel, ‘‘Synthesis of iron aluminide–Al2O3 Composites by
in-situdisplacement reactions’’ Mater. Sci. Rep.,Vol. A239-240
pp. 640-646,1997.
[21] C.H. Hanager,Jr., J.L. Brinhall, L.N. Brush, ‘‘Tailoring
structure and properties of composites synthesized in situ
using displacement reaction’’Mater. Sci. Rep.,Vol. A195 pp. 65-
67,1995.
[22] B.K. Yen, T. Aizawa, J. Kihara, “Synthesis and formation
mechanisms of molybdenum silicides by mechanical alloying,”
Mater. Sci. Eng., Vol. A220, pp. 8-14, 1996.
[23] C.D. Seetharama, N.T. Naresh, “Reaction synthesis of high-
temperature silicides,” Mater. Sci. Eng., Vol. A192/193, pp. 8-
14, 1996.
[24] C.h. Gras, D. Vrel, E. Gaffet, F. Bernard, “Mechanical
activation effect on the self-sustaining combustion reaction in
the Mo-Si system,” J. Alloys Comp., Vol. 314, pp. 240-250, 2001.
[25] S. Zhang, Z.A. Munir, “Synthesis of molybdenum silicides by the
self-propagating combustion method,” J. Mater. Sci., Vol. 26,
pp.3685-3688, 1991.
[26] J.J. Petrovic, “MoSi2-Base High-Temperature Structural
Silicide,” MAS Bull., Vol. XVIII, pp. 35, 1993.
[27] J.J. Petrovic, and A.K. Vasudevan, “Overview of high
temperature structural silicides,” Mater. Res. Soc. Symp.
Proc., Vol. 322, pp. 3, 1994.
[28] J.J. Petrovic, A.K. Vasudevan, “A comparative overview of
molybdenum disilicide composites,” Mater. Sci. Eng., Vol. A155,
pp. 1, 1992.
[29] Y. Hitoshi, T. Kudoh, T. Suzuki, ‘‘Oxidation resist- ance of
boronized MoSi2’’Surface and Coatings Technology., pp169-170,
2003.
[30] J.J. Petrovic, “Mechanical behavior of MoSi2 and MoSi2
composites,” Mater. Sci. Eng., Vol. A192/193, pp. 31-37, 1995.
[31] S.W. Jo, G.W. Lee, J.T. Moon, Y.S. Kim, “On the formation of
MoSi2 by self-propagating high-temperature synthesis,” Acta
Mater., Vol. 44, pp. 4317-4326, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top