跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/27 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪佳豐
研究生(外文):Hon Jia-fong
論文名稱:多孔性生醫玻璃陶瓷材料之研製
論文名稱(外文):Investigations of Porous Bioglass-Ceramic Materials
指導教授:何文福吳世經
指導教授(外文):Ho Wen-FuWu Shih-ching
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:95
語文別:中文
論文頁數:109
中文關鍵詞:支架材料多孔性生醫玻璃陶瓷硬酯酸燒結孔隙大小機械性質
外文關鍵詞:scaffoldsporous bioglass ceramicsstearic acidsinteringpore sizemechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以MgO-CaO-Al2O3-SiO2-P2O5之成分系統的玻璃為材料,用硬酯酸為成孔劑,經模壓成形再進行燒結,研製了多孔性生醫玻璃陶瓷,期能作為組織工程支架材料用途。
本實驗之玻璃主要化學成分為:MgO 3.0%、CaO 35.0%、Al2O3 8.6%、SiO2 41.4%、P2O5 12.0%。實驗結果顯示,玻璃分別經過960℃、1小時及1060℃、1小時的結晶熱處理後,主要晶相種類以XRD測定結果為:磷灰石、鈣長石兩種結晶相。
在添加三種不同含量及粒徑大小的硬酯酸經由960℃、1小時燒結後,分別用SEM、阿基米德原理量測孔隙大小、開放型孔隙度。以添加50vol%的硬酯酸發泡劑,其大孔隙分別為448±67μm、251±42μm、59±12μm,而開放型孔隙度則為29.94±1.14%、27.67±0.94%、18.67±0.97%。
所有樣品的孔隙度範圍從26.96±1.03%至45.89±0.17%,而孔隙度為26.96±1.03%之樣品,其彈性模數與彎曲強度接近於人類的皮質骨。其餘的樣品之機械性質只介於皮質骨與海綿骨之間。
浸泡人工體液30天後,樣品表面大量形成新的晶體,而且細胞活性評估的結果顯示,以SA50P1所形成的多孔性生醫玻璃陶瓷具有極佳之生物適應性。綜合上述實驗之結果顯示,此多孔性生醫玻璃陶瓷可作為組織工程之支架材料。
浸泡人工體液30天後,樣品表面大量形成新的晶體,而且細胞活性評估的結果顯示,以SA50P1所形成的多孔性生醫玻璃陶瓷具有極佳之生物適應性。綜合上述實驗之結果顯示,此多孔性生醫玻璃陶瓷可作為組織工程之支架材料。
The bioglass powders of MgO-CaO-Al2O3-SiO2-P2O5 system produced in this study were each mixed with stearic acid, pressed into shape and sintered in air, respectively.
The bioglass with chemical composition of MgO 3.0%, CaO 35.0%, Al2O3 8.6%, SiO2 41.4% and P2O5 12.0% was studied. The results respectively showed that after a heat treatment at 960℃ and 1060℃ for one hour in air ; the crystallized phases of apatite and anorthite in the specimen were determined by X-ray diffraction.
In the present study three different particle sizes and contents of stearic acid additive were used to produce porous structures. The pore size and open porosity of the produced specimens were measured by scanning electron microscopy and Archimede’s methods. The green bodies (content of 50vol%) were sintered at 960℃ for one hour. As a result, porous specimens with the open porosity of 29.94±1.14%, 27.67±0.94%, 18.67±0.97% and with the macropore size of 448±67μm, 251±42μm, 59±12μm were fabricated.
Porous specimens are fabricated in the total porosity range from 26.96±1.03 to 45.89±0.17% after sintering. Elastic modulus and bending strength at the total porosity of 26.96±1.03% are found to be similar to those of human cortical bone. Regarding mechanical properties of the other specimens could be ranged between cortical and cancellous bone.
Formation of the crystals on porous bioglass-ceramic surfaces in simulated body fluid after 30 days was investigated. Besides, SA50P1 was shown to be a good biocompatibility by MTT assay.
封面內頁
簽名頁
授權書.............................................................iii
中文摘要.............................................................iv
英文摘要..............................................................v
致謝...............................................................vii
目錄..............................................................viii
圖目錄.............................................................xii
表目錄..............................................................xv

第一章 緒論...........................................................1
1.1 前言.............................................................1
1.2 生醫骨科材料須具備的條件............................................2
1.3 生醫骨科陶瓷材料的分類及應用........................................3
1.4 研究動機及目的....................................................7
第二章 理論基礎與前人研究..............................................10
2.1 玻璃陶瓷簡介.....................................................10
2.1.1 結晶與成長機制.................................................10
2.1.2 相分離........................................................12
2.1.3 氧化物玻璃之形成................................................16
2.1.4 玻璃的特性溫度.................................................17
2.2 多孔性基材的定義及製作............................................21
2.1.1 結晶與成長機制.................................................21
2.2.2 模壓成形前之造粒................................................22
2.2.3 模壓成形.......................................................22
2.3 生胚特性對燒結的影響..............................................24
2.4 燒結機制….......................................................26
2.4.1 微粉的燒結行為.................................................27
2.4.2 微粉的燒結機制.................................................27
第三章 實驗方法與步驟.................................................32
3.1 實驗藥品與儀器...................................................32
3.1.1 儀器設備.......................................................32
3.1.2 實驗器材.......................................................32
3.1.3 化學藥品.......................................................33
3.2 實驗流程.........................................................34
3.3 玻璃熔製.........................................................35
3.4 玻璃陶瓷製作.....................................................37
3.5 多孔性玻璃陶瓷的製作..............................................37
3.5.1 生胚製作.......................................................37
3.5.2 生胚之熱處理...................................................37
3.6 粉末性質測定.....................................................40
3.6.1 顯微結構觀察...................................................41
3.6.2 粒徑大小與分布.................................................41
3.6.3 示熱差分析.....................................................41
3.7 生胚及燒結體之性質測定............................................42
3.7.1 密度量測.......................................................42
3.7.2 燒結體之孔隙度量測.......................................... ....43
3.7.3 燒結體之機械性質測量............................................45
3.7.4 結晶相分析.....................................................46
3.7.5 燒結體微結構觀察與孔隙大小評估...................................46
3.8 浸泡實驗.........................................................47
3.9 細胞培養.........................................................47
3.9.1 MTT分析.......................................................47
3.9.2 LDH分析.......................................................48
第四章 結果與討論.....................................................49
4.1 起始粉末分析.....................................................49
4.1.1 顯微結構觀察...................................................49
4.1.2 粒徑分析.......................................................54
4.2 玻璃的結晶成長分析................................................57
4.3 添加硬酯酸發泡劑對多孔性玻璃陶瓷基材的影響...........................61
4.3.1 生胚性質.......................................................61
4.3.2 不同燒結溫度對多孔體之影響.......................................65
4.4 加入不同添加量和粒徑大小之硬酯酸發泡劑對多孔體造成的影響...............69
4.4.1 體密度與燒結收縮分析…..........................................69
4.4.2 顯微結構觀察及孔隙大小分析.......................................69
4.4.3 孔隙度及機械性質分析............................................70
4.5 浸泡實驗.........................................................78
4.6 細胞活性評估…...................................................82
第五章 結論..........................................................84
參考文獻.............................................................86
[1] J. B. Park, “Biomaterials science and engineering”, Plenum Press, New York and London, (1988).
[2] K. Sayler, R. Holmes, and D. Johns, “Replamineform porous hydroxyapatite as bone substitutes in craniofacial osseous reconstruction”, Journal of Dental Research, 56B (1977) 173.
[3] F. H. Lin, and M. H. Hon, “Sintering of ß-Tricalcium Phosphate Bioceramics with Na4P2O7•10H2O”, Journal of Materials Science Letters, 6 (1987) 501–503.
[4] H. Yuan, Z. Yang, Y. Li, X. Zhang, J. D. de Bruijn, and K. de Groot, “Osteoinduction by calcium phopshate biomaterials”, Journal of Materials Science: Materials in Medicine, 9 (1998) 723–726.
[5] S. C. Wu, C. L. Wang, and M. H. Hon, “Effects of Ca/P ratio on the crystallization of MgO-CaO-Al2O3-SiO2-P2O5 glass-ceramics”, Journal of Ceramic Society of Japan, 103 (1995) 99–103.
[6] 俞耀庭, “生物醫用材料”, 新文京開發出版股份有限公司, (2004).
[7] L. L. Hench, “Bioceramics: Form Concept to Clinic”, Journal of the American Ceramic Society, 74 (1991) 1487–1510.
[8] R. H. Doremus, “Review: Bioceramics”, Journal of Materials Science, 27 (1992) 285–297.
[9] F. H. Lin, C. C. Lin, H. C. Liu, Y. Y. Huang, C. Y. Wang, and C. M. Lu, “Sintered porous DP-bioactive glass and hydroxyapatite as bone substitute”, Biomaterials, 15 (1994) 1087–1098.
[10] J. M. Dorlot, P. Christel, and A. Meunier, “Alumina HIP Prosthesis, Bioceramics: Proceeding of International Symposium on Ceramic in Medicine”, Tokyo, Ishi. Euro American, (1988) 236–301.
[11] G. Heimke, “Use of alumina ceramic in medicine”, Bioceramics Volumn, 3rd, Terre Haute, Ind., Rose Hulman Institute of Technology, (1992) 19–30.
[12] G. A. Graves, R.L. Hentrich, H. G. Stain, and P. K. Baijpai, “Resorable ceramic implantsin bioceramic”, Engineering in Medicine, New York, Interscience Publisher, (1972) 91–l 15.
[13] M. Jarcho, “Calcium phosphate ceramics as hard tissue prosthetics”, Clinical Orthopaedics and Related Research, 157 (1981) 259–278.
[14] D. S. Metsger, T. D. Driskell, and J. R. Paulsrud, “Tricalcium phosphate ceramic—a resorbable bone implant: review and current status”, The Journal of the American Dental Association, 105 (1982) 1035–1038.
[15] G. Willmann, “Medical grade hydroxyapatite: state of the art”, British Ceramic Transactions, 95 (1996) 212–216.
[16] R. Z. LeGeros, “Biodegradation and bioresorption of calcium phosphate ceramics”, Clinical Materials, 14 (1993) 65–88.
[17] L. L. Hench, R. J. Splinter, W. C. Allen, and T. K. Greenlee, “Bonding mechanism at the interface of ceramic prosthetic materials”, Journal of Biomedical Materials Research, 2 (1971) 117–141.
[18] H. Broemer, K. Deutscher, B. Blencke, E. Pfeil, and V. Strunz, “Properties of the bioactive implant material ‘Ceravital’ ”, Science of Ceramics, 9 (1977) 219–225.
[19] T. Kokubo, S. Ito, S. Sakka, and T. Yamamuro, “Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5”, Journal of Materials Science, 21 (1986) 536–540.
[20] W. Vogel, “Chemistry of glass”, American Ceramic Society, (1985) 251.
[21] F. H. Lin, and M. H. Hon, “Astudy on the bioglass ceramics in the NaO-CaO-SiO2-P2O5 system”, Journal of Materials Science, 23 (1989) 4295–4299.
[22] C. M. Stanford, “Application of oral implants to the general dental practice”, The Journal of the American Dental Association, 136 (2005) 1092–1100.
[23] N. Melba, V. Sergioi, M. Salvador, and P. G. Maria, “New macroporous calcium phosphate glass ceramic for guided bone regeneration”, Biomaterials, 25 (2004) 4233–4241.
[24] C. T. Lawrencin, S. F. El Amin, S. E. Ibim, D. A. Willoughby, M. Attavia, H. R. Allcock, and A. A. Ambrosio, “A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration”, Journal of Biomedical Materials Research, 30 (1996) 133–138.
[25] A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, “Laminated 3-dimentional biodegradable foams for use in tissue engineering”, Biomaterials, 14 (1993) 323–330.
[26] D. M. Liu, “Fabrication of hydroxyapatite ceramic with controlled porosity”, Journal of Material Science:Materials in Medicine, 8 (1997) 227–232.
[27] D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage”, Biomaterials, 21 (2000) 2529–2543.
[28] J. S. Temenoff, and A. G. Mikos, “Injectable biodegradable materials for orthopaedic tissue engineering”, Biomaterials, 21 (2000) 2405–2412.
[29] Y. Abe, M. Hosoe, and T. Kasuga, “High strength Ca(PO3)2 glass-ceramics prepared by unidirectional crystallization”, Journal of the American Ceramic Society, 65 (1982) 189–190.
[30] A. F. Lemos, and J. M. F. Ferreira, “Porous bioactive calcium carbonate implants processed by starch consolidation”, Materials Science and Engineering: C, 11 (2000) 35–40.
[31] O. Lyckfeldt, and J. M. F. Ferreira, “Processing of porous ceramics by a new direct consolidation technique”, Journal of the European Ceramic Society, 18 (1998) 131–140.
[32] J. Saggio-Woyansky, C. E. Scott, and W. P. Minnear, “Processing of porous ceramics”, American Ceramic Society bulletin, 71 (1992) 1674–1682.
[33] K. de Groot, C. P. A. T Klein, J. G. C. Wolke, and J. M. A. De Blieck-Hogervorst, “Chemistry of calcium phosphate bioceramics”, Handbook of Bioactive Ceramics, 2 (1990) 3–16.
[34] O. Gauthier, J. M. Bouler, E. Aguado, P. Pilet, and G. Daculsi, “Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentages on bone ingrowth”, Biomaterials, 19 (1998) 133–139.
[35] J. Bobyn, R. Pilliar, H. Cameron, and G. Weatherly, “The optimal pore size for the fixation of porous surfaced metal implants by the ingrowth of bone”, Clinical Orthopaedics and Related Research, 150 (1980) 263–270.
[36] W. Cao, and L. L. Hench, “Bioactive materials”, Ceramics International, 22 (1996) 493–507.
[37] H. A. Elbatal, M. A. Azooz, E. M. A. Khalil, A. S. Monem, and Y. M. Hamdy, “Characterization of some bioglass-ceramics”, Materials Chemistry and Physics. 80 (2003) 599–609.
[38] A. El-Ghannam, P. Ducheyne, and I. M. Shapiro, “Bioactive material template for in vitro synthesis of bone”, Journal of Biomedical Materials Research, 29 (1995) 359–370.
[39] M. S. Hernández-Crespo, M. Romero , and J. Ma. Rincón, “Nucleation and crystal growth of glasses produced by a generic plasma arc-process ”, Journal of the European Ceramic Society, 26 (2006) 1679–1685.
[40] A. K. Varshneya, D. J. Mauro, B. Rangarajan, and B. F. Bowden, “Deformation and Cracking in Ge–Sb–Se Chalcogenide Glasses During Indentation”, Journal of the American Ceramic Society, 90 (2007) 177–183.
[41] P. F. James and W. Shi, “Crystal nucleation kinetics in a 40CaO-40P2O5-20B2O3 glass — a study of heterogeneously catalysed crystallization”, Journal of Materials Science, 28 (1993) 2260–2266.
[42] 吳振名, “玻璃陶瓷”, 陶瓷技術手冊(下), 經濟部技術處發行, (1994).
[43] M. J. Davis, and I. Mitra, “A Combinatorial Chemistry Study of YAG Nucleation”, Journal of the American Ceramic Society, 86 (2003) 1540–1546.
[44] W. H. Zachariasen, “The atomic arrangement in glass”, Journal of the American Ceramic Society, 54 (1932) 3841.
[45] A. Sakamoto, F. Sato, and S. Yamamoto, “Structural relaxation and optical properties in transparent nanocrystalline ß-quartz glass-ceramic”, Journal of Non-Crystalline Solids, 352 (2006) 514–518.
[46] P. F. James, “Glass ceramics: New compositions and uses”, Journal of Non-Crystalline Solids, 181 (1995) 1–15.
[47] K. Ishizaki, S. Komarneni, and M. Nanko, “Porous Materials: Processing Technology and Applications”, Kluwer Academic Publishers, (1998).
[48] J. Szymura-Oleksiak, A. Ślόsarczyk, A. Cios, B. Mycek, Z. Paszkiewicz, S. Szklarczyk, and D. Stankiewicz, “The kinetics of pentoxifylline release in vivo from drug-loaded hydroxyapatite implants”, Ceramics International, 27 (2001) 767–772.
[49] Jean-Michel Bouler, Marylène Trécant, Joël Delécrin, Jean Royer, Norbert Passuti, and Guy Daculsi, “Macroporous biphasic calcium phosphate ceramics: Influence of five synthesis parameters on compressive strength”, Journal of Biomedical Materials Research, 32 (1996) 603–609.
[50] M. H. Prado da Silva, A. F. Lemos, I. R. Gibson, J. M. F. Ferreira, and J. D. Santos, “Porous glass reinforced hydroxyapatite materials produced with different organic additives”, Journal of Non-Crystalline Solids, 304 (2002) 286–292.
[51] K. Maca, P. Dobsak, and A. R. Boccaccini, “Fabrication of graded porous ceramics using alumina–carbon powder mixtures”, Ceramics International, 27 (2001) 577–584.
[52] J. J. Klawitter, A. M. Weinstein, F. W. Cooke, L. J. Peterson, B. M. Pennel, and R. V. McKinney, “An evaluation of porous alumina ceramic dental implants”, Journal of Dental Research, 56 (1977) 768–776.
[53] H. Yuan, J. D. de Bruijn, X. Zhang, C. A. van Blitterswijk, and K. de Groot, “Bone Induction by Porous Glass Ceramic Made from Bioglass® (45S5) ”, Journal of Biomedical Materials Research, 58 (2001) 270–276.
[54] M. Navarro, S. del Valle, S. Martinez, S. Zeppetelli, L. Ambrosio, J. A. Planell, and M. P. Ginebra, “New macroporous calcium phosphate glass ceramic for guided bone regeneration”, Biomaterials, 25 (2004) 4233–4241.
[55] H. R. Ramay, and M. Zhang, “Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods”, Biomaterials, 24 (2003) 3293–3302.
[56] M. Milosevski, J. Bossert, D. Milosevski, and N. Gruevska, “Preparation and properties of dense and porous calcium phosphate”, Ceramics International, 25 (1999) 693–696.
[57] D. C. Tancred, B. A. O. McCormack, and A. J. Carr, “A synthetic bone implant macroscopically identical to cancellous bone”, Biomaterials, 19 (1998) 2303–2311.
[58] 曲遠方, “功能陶瓷材料”, 曉園出版社有限公司, (2006).
[59] 肖定全, “陶瓷材料” , 新文京開發出版有限公司, (2003).
[60] 汪建民、朱秋龍, “粉末冶金” , 中華民國粉末冶金協會, (1999).
[61] F. F. Lange, “Sinterability of Agglomerated Powders”, Journal of the American Ceramic Society, 67 (1984) 83–89.
[62] M. F. Yan, R. M. Cannon, U. Chowdhry, and H. K. Bowen, “Effect of grain size distribution on sintered density”, Materials Science and Engineering A, 60 (1983) 275–281.
[63] H. P. Cohoon, and C. J. Christensen, “Sintering and Grain Growth of Alpha-Alumina”, Journal of the American Ceramic Society, 39 (1956) 337–344.
[64] R. L. Coble, “Sintering Crystalline Solids: II, Experimental Test of Diffusion Models in Powder Compacts”, Journal of Applied Physics, 32 (1961) 793–799.
[65] 徐仁輝, “粉末冶金概論”, 新文京開發出版有限公司, (2002).
[66] 王明光、王敏昭, “實用儀器分析”, 合記圖書出版社, (2003).
[67] E. N. Ozguür, and T. A. Cuüneyt, “Manufacture of Macroporous Calcium Hydroxyapatite Bioceramics”, Journal of the European Ceramic Society, 19 (1999) 2569–2572.
[68] Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, “45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering”, Biomaterials, 27 (2006) 2414–2425.
[69] 葉郁仁、林鴻儒、郭俊榕、楊俊佑、吳侑峻, “應用於骨組織工程Alginate/HAP多孔海綿體之製備及活體外與活體內相關性質之研究”, 中華民國生物醫學工程學會, 2002年年會論文集, (2002).
[70] A. Tampieri, G. Celotti, S. Sprio, A. Delcogliano, and S. Franzese, “Porosity-graded hydroxyapatite ceramics to replace natural bone”, Biomaterials, 22 (2001) 1365–1370.
[71] R. Xin, Y. Leng, J. Chen, and Q. Zhang, “A comparative of calcium phosphate formation on bioceramics in vitro and in vivo”, Biomaterials, 26 (2005) 6477–6486.
[72] S. J. Ding, C. W. Wang, C. H. Chen, and H. C. Chang, “In vitro degradation behavior of porous calcium phosphates under diametral compression loading”, Ceramics International, 31 (2005) 691–696.
[73] T. Kokubo, S. Ito, Z. T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, and T. Yamamuro, “Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W”, Journal of Biomedical Materials Research, 24 (1990) 331–341.
[74] K. S. Jaw, C. K. Hsu, and J. S. Lee, “The thermal decomposition behaviors of stearic acid, paraffin wax and polyvinyl butyral”, Thermochimica Acta, 367-368 (2001) 165–168.
[75] R. M. German, “Particle packing characteristics”, NJ: Metal Powder Industries Federation, (1989) 404–407.
[76] C. L. Martin, and D. Bouvard, “Isostatic compaction of bimodal powder mixtures and composites”, International Journal of Mechanical Sciences, 24 (2004) 907–927.
[77] R. K. McGeary, “Mechanical packing of spherical particles”, Journal of American Ceramic Society, 44 (1961) 513–522.
[78] Y. Cai, and L. Zhou, “Effect of thermal treatment on the microstructure and mechanical properties of gel-derived bioglasses”, Materials Chemistry and Physics, 94 (2005) 283–287.
[79] J. R. Joones, L. M. Ehrenfried, and L. L. Hench, “Optimising bioactive glass scaffolds for bone tissue engineering”, Biomaterials, 27 (2006) 964–973.
[80] J. B. Park and R. S. Lakes, Biomaterials 2nd, Plenum Press, New York, (1992).
[81] Ayhan Mergen, and ve Ziya Aslanoğlu, “Low-temperature fabrication of anorthite ceramics from kaolinite and calcium carbonate with boron oxide addition”, Ceramics International, 29 (2003) 667–670.
[82] W. Gong, A. Abdelouas, and W. Lutze, “Porous bioactive glass and glass-ceramics made by reaction sintering under pressure”, Journal of Biomedical Materials Research, 54 (2001) 320–327.
[83] I. D. Xynos, M. V. Hukkanen, J. J. Batten, L. D. Buttery, L. L. Hench, and J. M. Polak, “Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: implications and applications for bone tissue engineering”, Calcified Tissue International, 67 (2000) 321–329.
[84] A. R. El-Ghannam, “Advanced bioceramic composite for bone tissue engineering: design principles and structure–bioactivity relationship”, Journal of Biomedical Materials Research, 69 (2004) 490–501.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top