跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 06:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黎中堅
研究生(外文):LE TRUNG KIEN
論文名稱:行人有限元素模型之建立
論文名稱(外文):Development and Validation of Pedestrian Deformable Finite Element Model
指導教授:鄧作樑鄧作樑引用關係
指導教授(外文):Tso-Liang Teng
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:102
中文關鍵詞:可變形行人模型車輛-行人撞擊行人損傷行人防護全尺寸行人模型
外文關鍵詞:Pedestrian deformable modelpedestrian injuriespedestrian protectionpedestrian-vehicle impactfull scale pedestrian model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
汽車撞擊行人造成的傷害佔了交通事故傷亡人數很大的比
例,因此行人安全防護在各國汽車安全性研究已日漸受到重視。
使用有限元素理論建立行人模型,可以在電腦中虛擬地呈現行人
與車輛碰撞的各種反應,從而把握行人在碰撞後的運動情況以及
傷害情況。故本論文首先採用LD-DYNA 分析軟體建構可變形的
有限元素行人模型;並分別以25, 32 及40 km/hr 不同碰撞速度衝
擊有限元素行人模型,探討行人模型頭部、骨盆,膝蓋及足部各
部位之位移動態軌跡以及頭部速度結果,並藉由死屍實驗來驗證
本論文建構有限元素行人模型之正確性;另外本研究亦藉由車輛
撞擊行人數值模擬對行人頭部、小腿、大腿、胸部、頸部及骨盆
等部位進行損傷分析。採用本論文建立之行人數值模型進行車輛
碰撞行人事故模擬與損傷分析,可準確地評價車輛在行人保護方
面的性能,更為未來車體結構及行人安全防護裝備之設計參考。
Recently, Pedestrian protection has become an increasingly important
consideration in vehicle crash safety. Pedestrian-vehicle crashes cause a significant
number of pedestrian fatalities and injuries globally. Computer models are powerful
tools for understanding how to reduce the injuries severity in such crashes. Real-world
studies of pedestrians provide an important source of information for evaluating
pedestrian model dynamic performance and ability to reconstruct injury-causing
events. This study describes the validation process of deformable pedestrian model
using published post-mortem human subject (PMHS) trajectory and head resultant
velocity corridors, and demonstrates its applicability to pedestrian - vehicle impact
research, the pedestrian injuries are also analyzed in impact with vehicle at three
velocities 25, 32 and 40km/h. This study implemented the deformable pedestrian
model using LS-DYNA finite element code. The pedestrian model is validated by
comparison the displacement trajectories of the head, pelvis, knee and foot with
PMHS data. The pedestrian injuries are analyzed in this study include serious injuries
of parts which will effect on the pedestrian life such as injuries of head, leg, thigh,
thorax, neck and pelvis. The finite element pedestrian model thus obtained can help
assess the friendliness of vehicles with pedestrian in traffic crash and assist in the
future development of pedestrian safety technologies.
CONTENTS
COVER
CREDENTIAL
AUTHORIZATION LETTER ..................................................................................... iii
ABSTRACT ................................................................................................................. iv
ACKNOWLEDGMENTS ............................................................................................ v
TABLE OF CONTENTS ............................................................................................ vii
TABLE OF FIGURES .................................................................................................. x
LIST OF TABLES ..................................................................................................... xiii
Chapter I INTRODUCTION ........................................................................................ 1
1.1 Motivation ............................................................................................... 1
1.2 Literature survey ..................................................................................... 5
1.3 The purpose of this study ...................................................................... 11
1.4 The structure of this thesis .................................................................... 11
Chapter II ASSESSMENT METHODD OF PEDESTRIAN FRIENDLINESS OF
VEHICLE ............................................................................................... 25
2.1 Impactor method ................................................................................ 25
2.1.1 Headform to Bonnet Top Test ................................................. 25
a) Purpose ................................................................................ 25
b) Certification Tests of Headform Impactor .......................... 26
c) Test Procedure .................................................................... 26
d) Head Injury Criterion Definition ........................................ 26
2.1.2 Upper Legform to Bonnet Leading Edge Test ......................... 27
a) Purpose ................................................................................ 27
b) Certification Test of Upper Legform Impactor .................. 27
c) Test Procedure .................................................................... 27
2.1.3 Legform to Bumper Test .......................................................... 28
a) Purpose ................................................................................ 28
b) Certification Test of Upper Legform Impactor .................. 29
c) Test Procedure .................................................................... 29
2.2 Full scale pedestrian model method .................................................. 29
2.2.1 PMHS corridor for vehicle ....................................................... 29
2.2.2 PMHS trajectory corridor of body segments of pedestrian model
........................................................................................................... 30
2.3 Injuries criterion for pedestrian injuries evaluaton ........................... 31
Chapter III FINITE ELEMENT MODEL OF PEDESTRIAN AND VEHICLE ....... 43
3.1 Pedestrian model ............................................................................... 43
3.1.1 Head ......................................................................................... 44
3.1.2 Neck ......................................................................................... 44
3.1.3 Clavicle .................................................................................... 44
3.1.4 Arms ......................................................................................... 45
3.1.5 Chest ........................................................................................ 45
3.1.6 Abdomen .................................................................................. 46
3.1.7 Pelvis ........................................................................................ 46
3.1.8 Hip joint ................................................................................... 47
3.1.9 Thigh ........................................................................................ 47
3.1.10 Knee ....................................................................................... 48
3.1.11 Leg ......................................................................................... 48
3.1.12 Ankle jont ............................................................................... 48
3.1.13 Foot ........................................................................................ 49
3.1.14 Contact interaction ................................................................. 49
3.2 Finite element car model ................................................................... 49
Chapter IV PEDESTRIAN MODEL VALIDATION RESULT AND DISCUSSION
................................................................................................................. 61
4.1 PMHS validaton result ...................................................................... 61
4.2 Kinematics of pedestrian in impact with vehicle .............................. 62
4.3 How to apply the current pedestrian model ...................................... 63
Chapter V PEDESTRIAN INJURIES ANALYSIS ................................................... 71
5.1 Impact environment .......................................................................... 71
5.2 Deformable car model ....................................................................... 71
5.3 Injuries analysis ................................................................................ 72
5.3.1 Head injury ............................................................................... 72
5.3.2 Neck injury ............................................................................... 73
5.3.3 Chest injury .............................................................................. 74
5.3.4 Waist injury .............................................................................. 75
5.3.5 Pelvis injury ............................................................................. 76
5.3.6 Femur injury ............................................................................. 76
5.3.7 Tibia injury ............................................................................... 77
5.3.8 Knee injury ............................................................................... 78
5.3.9 Ankle injury ............................................................................. 79
5.4 The effect of front shape of car on the injuries of pedestrian model 79
5.4.1 The effect of front shape on the pelvis injury .......................... 79
5.4.2 The effect of leading edge shape on the femur injury .............. 80
5.4.3 The effect of bumper shape on the tibia injury ........................ 80
5.4.4 The effect of bumper shape on the knee injury ........................ 80
5.5 Summarizations ................................................................................. 81
Chapter VI CONCLUSIONS AND FURTHER STUDIES ....................................... 98
6.1 Conclusions ....................................................................................... 98
6.2 Further studies ................................................................................... 99
REFERENCES ......................................................................................................... 100

TABLE OF FIGURES

Figure 1-1. The injured people distribution in motor vehicle crash 13
Figure 1-2. The killed people distribution in motor vehicle crash 13
Figure 1-3. Pedestrian Fatalities and Injuries by Type of Vehicle 1992-2001 Average in Canada 14
Figure 1-4. Impact location on the car 14

Figure 1-5. Frequency of injury to different parts of the body of pedestrians and portions of the vehicle causing injury in collisions between vehicles and pedestrians.……………………………………………………………...15
Figure 1-6. EEVC Pedestrian Sub-system Tests 15
Figure 1-7. Setup for pedestrian Sub-system Tests of EEVC/WG17 16
Figure 1-8. Polar dummy model at impact test 16
Figure 1-9. Headform impactor models 17
Figure 1-10. Specification of computer upper legform impactor model 17
Figure 1-11. Specification of upper legform impactor model 18
Figure 1-12. Multibody models of 50th percentile male pedestrians 18
Figure 1-13. TNO pedestrian model 19
Figure 1-14. Total HUman Model for Safety (THUMS) AM50 pedestrian model 19
Figure 1-15. Bumper system with foam 20
Figure 1-16. Redesign of bonnet 20
Figure 1-17. New material of bumper and hood 21
Figure 1-18. Rising hood 21
Figure 1-19. Exterior airbag at A-Pillar 22
Figure 1-20. The new Mercedes-Benz S-Class: Pedestrian protection 23
Figure 2-1. Headform certification test 32
Figure 2-2. Configuration of headform to bonnet top test 32
Figure 2-3. Certification test of the upper legform 33
Figure 2-4. The configuration of upper legform to bonnet leading edge test 33
Figure 2-5. Velocity of upper legform to bonnet leading edge test 34
Figure 2-6. Angle of upper legform to bonnet leading edge tests 34
Figure 2-7. Kinetic energy of upper legform to bonnet leading edge test 35
Figure 2-8. Static bending certification test of the legform 35
Figure 2-9. Static shearing certification test of the legform 36
Figure 2-10. Requirements of static certification tests 36
Figure 2-11. Dynamic certification test of the legform 37
Figure 2-12. Legform to bumper tests for complete vehicle 37
Figure 2-13. The vehicle size using for pedestrian model validation 38
Figure 2-14. PMHS corridor of the head, pelvis, knee, and foot trajectories for all three velocities 25km/h, 32 km/h, and 40 km/h 38
Figure 2-15. PMHS corridor of head resultant velocity simulation at 25km/h 39
Figure 2-16. PMHS corridor of head resultant velocity simulation at 32km/h 39
Figure 2-17. PMHS corridor of head resultant velocity simulation at 40km/h 40
Figure 3-1. Pedestrian model 51
Figure 3-2. Head of pedestrian model 51
Figure 3-3. Neck of pedestrian model 52
Figure 3-4. Clavicle of pedestrian model 52
Figure 3-5. Arm of pedestrian model 53
Figure 3-6. Rib module of pedestrian model 53
Figure 3-7. Abdomen of pedestrian model 54
Figure 3-8. Pelvis model of seat model and pedestrian model 54
Figure 3-9. Hip joint structure of seat model and pedestrian model 55
Figure 3-10. Thigh model of seat model and pedestrian model 55
Figure 3-11. Leg model of seat model and pedestrian model 56
Figure 3-12. Leg model of seat model and pedestrian 56
Figure 3-13. Car-Pedestrian impact posture 57
Figure 4-1. Head trajectory of pedestrian model together with PMHS corridor 65
Figure 4-2. Pelvis trajectory of pedestrian model together with PMHS corridor 65
Figure 4-3. Knee trajectory of pedestrian model together with PMHS corridor 66
Figure 4-4. Foot trajectory of pedestrian model together with PMHS corridor 66
Figure 4-5. Head resultant velocity of simulation together with PMHS corridor 67
Figure 4-6. Validation result on overall pedestrian kinematics 68
Figure 4-7. Stand posture of pedestrian model before impact with car 69
Figure 4-8. Walking posture of pedestrian model before impact with car 69
Figure 4-9. Running posture of pedestrian model before impact with car 70
Figure 4-10. The difference head displacements among difference cases at impact velocity V=32km/h 70
Figure 5-1. The impact posture of pedestrian and deformable car model 83
Figure 5-2. The deformable car model 83
Figure 5-3. The displacement of head, pelvis, knee and foot of pedestrian model in impact with rigid and deformable car model 84
Figure 5-4. Impact location of pedestrian’s head in impact with deformable car model 84
Figure 5-5. Angular acceleration of pedestrian model’s head in impact with deformable car model at velocity V=25km/h 85
Figure 5-6. Angular acceleration of pedestrian model’s head in impact with deformable car model at velocity V=32km/h 85
Figure 5-7. Angular acceleration of pedestrian model’s head in impact with deformable car model at velocity V=40km/h 86
Figure 5-8. Tension and compression forces on neck of pedestrian model at three velocities in impact with deformable car model 86
Figure 5-9. Resultant acceleration of pedestrian model’s chest in impact with deformable car model at three impact velocities 87
Figure 5-10. The chest volume of pedestrian in impact with deformable car model at 3 impact velocities 87
Figure 5-11. The spinal is bended in impact with vehicle 88
Figure 5-12. The bending moment at waist joint of pedestrian in impact with deformable car model at three velocities 88
Figure 5-13. The ilium is deformed during impact with vehicle 89
Figure 5-14. The force at ilium during impact with deformable vehicle model 89
Figure 5-15. The impact force at femur during impact with deformable vehicle model 90
Figure 5-16.The bending moment at femur during impact with deformable vehilce model 90
Figure 5-17. The bending moment at tibia of pedestrian during impact with deformable vehicle model 91
Figure 5-18. The tibia acceleration of pedestrian during impact with deformable vehicle model 91
Figure 5-19. The knee shear displacement of pedestrian during impact with deformable vehicle model 92
Figure 5-20. The front shape of deformable and rigid car model 92
Figure 5-21. The force at ilium of pedestrian during impact with sharp and round front shape car model at 40km/h 93
Figure 5-22. The impact force at femur of pedestrian during impact with sharp and round front shape car model at 40km/h 93
Figure 5-23. The bending moment at femur of pedestrian during impact with sharp and round front shape car model at 40km/h 94
Figure 5-24. The bending moment at tibia of pedestrian during impact with sharp and round front shape car model at 40km/h 94
Figure 5-25. The knee shear displacement during impact with sharp and round front shape car model at 40km/h 95



LISTS OF TABLES

Table 1-1. People injured in motor vehicle crashes, by role 23
Table 1-2. People killed in motor vehicle crashes, by role 24
Table 2-1. Pedestrian size corresponding with PMHS size for trajectory and velocity corridors 41
Table 2-2. The injury criteria of the body segments 41
Table 2-3. The injury criteria and levels for American 50th percentile male 42
Table 3-1. Head Material Properties 57
Table 3-2. Thigh Material Properties 58
Table 3-3. Leg Material Properties 58
Table 3-4. Ankle joint Properties 59
Table 3-5. Pedestrian model size corresponding with PMHS size for trajectory and velocity corridors 59
Table 3-6. Dimensions of car model and PMHS data 60
Table 5-1. HIC and Impact Location of Pedestrian model’s Head 95
Table 5-2. Rotation angle and correlative time of pedestrian’s neck 96
Table 5-3. The ankle inversion/eversion angle of pedestrian model in impact with deformable car model 96
Table 5-4. Injuries Summary 97
REFERENCES

1.NHTSA’s (National Highway Traffic Safety Administration) Annual Assessment of Motor Vehicle Crash: Motor Vehicle Traffic Crash Fatality Counts and Estimates People of Injured for 2005 – Updated December 13, 2006.
2.L. Astrid, M. Clay, C. Anthony, Y. Jikuang, O. Dietmar, Mathematical Simulation of Real-World Pedestrian-Vehicle Collisions, Paper No. 05-285, 2005.
3.SUSPA Gaspedern: http://www.suspa.com
4.Road Safety and Motor Vehicle Regulation Directorate, Pedestrian Fatalities and Injuries in Canada -1992-2001, December 2004.
5.P. P. Michael, G. C. Christopher, Assessment of Pedestrian Protection Afforded by Vehicles in Australia, March 2000.
6.F. A. Berg, M. Egelhaaf, J. Bakker, H. Bürkle, R. Herrmann, J. Scheerer, Pedestrian Protection In Europe-The Potential of Car Design and Impact Testing.
7.K. Ingo, F. Flavio, Improvements to Pedestrian Protection as Exemplified on a Standard-Sized Car, Report No. 283, Germany, 2000.
8.M. Yoshiuki, I. Hirotoshi, Summary of IHRA Pedestrian Safety WG Activities-Proposed Test Methods To Evaluate Pedestrian Protection Afforded by Passenger Cars, Paper Number 280.
9.Ingenieria Y A Sistemas S.A: www.arise-ingenieria.com.
10.O. Yutaka, A. Akihiko, O. Masayoshi, K. Yuji, A Study of The Upper Leg Component Tests Component Tests Compared With Pedestrian Dummy Tests, Paper Number 380.
11.K. Atsuhiro, I. Hirotoshi, K. Robert, Development of computer simulation models for pedestrian subsystem impact tests, JSAE Review 21 (2000) 109 – 115.
12.L. Astrid, C. Anthony, D. Clay, F. Brian, Y. Jikuang, S. Laurie, Mathematical modelling of pedestrian crashes: Review of Pedestrian Models and Parameter Study of The Influence of The Sedan Vehicle Contour, Victoria, Australia, 2003
13.V. R. Lex, B. Kavi, M. Mark, I. Johan, C. Jeff, L. Douglas, T. Yukou, D. Yasuhiro, K. Yuji, Pedestrian Crash Reconstruction Using Multi-Body Modeling with Geometrically Detailed, Validated Vehicle Models and Advanced Pedestrian Injury Criteria, Paper Number 468, 2003.
14.I. Masami, O. Kiyioshi, K. Hideyuki, N. Yuko, T. Atsutaka, W. Isao, M. Kazuo, H. Junji, O. Fuminori, Recent advanes in THUMS: Development of Individual Internal Organs, Brain, Small Female, and Pedestrian Model, 4th European LS-DYNA Users Conference, 2002.
15.Dipl. Ing. Dr. Franz Laimbock, Book: Safety and Crash Behavior, March 1993.
16.S. Jiri, C. Viktor, Pedestrian – Vehicle Collision: Vehicle Design Analysis, 2003-01-0896.
17.Hexcel Composite: Hexcel’s Product for Automotive Pedestrian Impact Protection: Automotive Pedigree and Efficient Energy Absorbing Solutions.
18.M. Tetsuo, A. Toshiyuki, Development of pedestrian protection technologies for ASV, SAE Review 23 (2002) 353–356.
19.IMM – Institute for Informatics and Mathematical Modelling-Technical University of Danmark: www2.imm.dtu.dkcourses02431.
20.Ulrich Mellinghoff, Protecting Pedestrians the Mercedes Way.
21.S. Jason, A. Barsan-Anelli, Adaptation of a Human Body Mathematical Model to Simulation of Pedestrian/Vehicle Interaction, 4th MADYMO User's Meeting of the America's, Detroit, October 24th, 2001.
22.EEVC Working Group 17 Report, Improved Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars (December 1998 with September 2002 updates).
23.Y. Jikuang, Review of Injury Biomechanics in Car - Pedestrian Collisions (Report to European Pasive Safety Network), February 28th, 2002.
24.V. R. Lex, M. Mark, N. Kavi, C. Jeff, L. Douglas, T. Yukou, D. Yasuhiro, K. Yuji, The evaluation of the kinematics of the MADYMO human pedestrian model against experimental tests and the influence of a more biofidelic knee joint, 2005.
25.Michael Paine, Pedestrian Protection by Vehicle Design an International Seminar, Australia on 25 & 26 February 1999.
26.Find Articles: Ward’s Auto World Pedestrian Impact.htm
27.The Insurance Institute for Highway Safety-The Highway Loss Data Institute (Q&A: PEDESTRIANS): http://www.iihs.org/default.html
28.O. N. Mark, K. Heui-Su, J.T. Wang, F. Takanobu, N. Katsumi, Development of LS-Dyna Finite Element Models for Simulating EEVC Pedestrian Impact, Paper Number 335.
29.L. Alexandra, A. Robert, The development and validation of the IHRA pedestrian model using MADYMO and AutoDOE, Proceedings of the 2005 Madymo Users Meeting, November 2006.
30.K. Atsuhiro, Reconstruction analysis for car–pedestrian accidents using a computer simulation model, JSAE Review 23 (2002) 357–363.
31.K. Atsuhiro, I. Hirotoshi, S. Akira, A study on pedestrian impact test procedure by computer simulation - The Upper Legform to Bonnet Leading Edge Test, Paper Number 98-S 10-W- 19, 2349-2356
32.F. Rikard, H. Yngve, Y. Jikuang, Evaluation of A New Pedestrian Head Injury Protection System with A Sensor In The Bumper and Lifting of The Bonnet’s Rear Part, Paper number 131.
33.M. S. Neale, B. J. Hardy and G. J. L. Lawrence, Development and review of the IHRA (JARI) and TNO pedestrian models, Paper Number 499.
34.Vehicle Design & Research Pty Limited: http://www1.tpgi.com.au
35.LS-DYNA User Manual Version 960, Livermore Software Technology Corporation, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top