跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝元昌
研究生(外文):HSIEN YUAN CHANG
論文名稱:電膠凝技術在製漿造紙廠廢水之應用研究
論文名稱(外文):Study on the Electro-Coagulation Treatment of a Pulp and Paper Mill Wastewater
指導教授:彭元興彭元興引用關係
指導教授(外文):YUAN SHING PERNG
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:250
中文關鍵詞:脈衝電凝法電膠凝電氧化紙廠廢水實驗室級電凝反應器經濟效益評估
外文關鍵詞:pulsed electrocoagulation methodelectrocoagulationelectrooxidatinpaper mill effluentslab-scale unitevaluation of effic
相關次數:
  • 被引用被引用:3
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國內大型工業用紙廠廢水經二級生物系統處理後水質指標已符合環保法規,但因電導度偏高(> 2,000 μs/cm)及水色呈微琥珀色,此將嚴重影響抄紙機濕端化學系統的穩定性及製程系統的潔淨度並且會有菌泥產生的問題,導致處理後的廢水必須放流;當環保署開始徵收水污及水權等費用後,如此大量的放流水無法有效回收必定會造成營業成本上的增加。
脈衝電凝系統為0.5-1.0 m3/h的先驅廠級電脈衝電凝系統,停留時間為0.2-0.25 h,系統主要單元有:調勻槽、反應槽、曝氣槽、膠羽槽、沉澱槽。試驗的紙廠選定為:特殊用紙廠選定為埔里某紙廠(A),主要產品為特殊用紙,生產量為5 t/d,廢水排放量約為1300 m3/d;紙管用紙廠選定為觀音某紙廠(B),主要產品為紙管用紙,生產量在150 t/d,廢水排放量為1800-2000 m3/d;製漿廠選定為台南某漿紙廠(C),主要產品為紙漿、文化用紙、化學藥品,生產量為136000、80000、37500 t/yr,廢水排放量為25000 m3/d。
實驗室級電凝反應器總容積為3700 mL,以鋁板或鐵板為電極,間距為5 mm,系統主要單元有:調勻槽、反應槽、沉澱槽。實驗的紙廠選定為后里某紙廠(D),主要產品為紙管原紙、塗佈白紙板、瓦楞芯紙、牛皮紙板、文化用紙、銅版紙,生產量分別為110、115、650、540、300、220 t/d,廢水排放量約為20000 m3/d。
本研究分為兩個部份,第一部份為脈衝電凝系統現場試驗,第一階段係利用鐵板及鋁板為脈衝電凝反應器之電極來處理紙廠廢水,第二階段則分別依各廠特性做檢測項目及經濟評估,以探討其處理效果;第二部份為實驗室級電凝反應器實驗室實驗,第一階段係先設計本研究所需的實驗室級電凝反應器,第二階段則利用所設計的實驗室級電凝反應器處理製程廢水,並進行探討其處理效果,第三階段實驗結果利用離子層析儀(IC)及感應耦合電漿原子放射光譜儀(ICP)來分析處理前後廢水中所含的金屬離子濃度變化,並了解其廢水之基本性質,第四階段則綜合實驗室級電凝反應器之操作參數,探討在紙廠廢水的處理成效以及反應機構之建立。
實驗結果資料顯示脈衝電凝系統與傳統廢水處理而言來比較,皆可有效提高電導度、SS、COD、真色色度等之去除率,A廠在黑色特殊紙製程白水部分,鋁板去除率電導度為21.4 %、SS為97.1 %、COD為58.8 %及真色色度為58.9 %;在白色特殊紙製程白水部分,鋁板去除率電導度為4.3 %、SS為98.6 %、COD為50.0 %及真色色度為0 %;B廠鋁板去除率電導度為1.5 %、SS為98.4 %、COD為25.4 %及硬度為48.9 %;鐵板去除率電導度為19.6 %、SS為93.8 %、COD為30.9 %及硬度為47.9 %;C廠鋁板去除率電導度為63.2 %、SS為92.9 %、COD為75.7 %及真色色度為86.4 %;鐵板去除率電導度為70.1 %、SS為96.4 %、COD為81.1 %及真色色度為86.6 %。為了降低處理成本的支出,各廠實驗的過程中皆不添加助凝劑,因此在經濟效益評估之後,A廠若不考慮設備折舊、人事成本,以鋁板為電極板,電費,藥劑及電極板之成本約需2.470元/噸水;B廠不考慮設備折舊、人事成本,以鐵板為電極板,電費,藥劑及電極板之成本約需11.600元/噸水;以鋁板為電極板,電費,藥劑及電極板之成本約需12.040元/噸水;C紙廠不考慮設備折舊、人事成本,以鐵板為電極板,電費,藥劑及電極板之成本約需0.720元/噸水;以鋁板為電極板,電費,藥劑及電極板之成本約需1.640元/噸水。
實驗結果資料顯示實驗室級電凝反應器可有效提高電導度、SS、COD、真色色度、陰陽離子等之去除率,D廠最佳條件下電導度為21.6 %、SS為91.4 %、COD為48.2 %、真色色度為53.7 %、總硬度為49.4 %、Cl-為12.9 %、SO42-為15.5 %、K+為9.9 %、Na+為6.9 %、Al3+為50.0 %及Fe2+/Fe3+為0 %。
可能發生的反應機構:
1.電場的建立
實驗室級電凝反應器中,通以電流利用電極板間不同的正負電壓來產生電場,以促使廢水中的雜質偶極化,使極板釋放鐵離子,產生了Fe2+/Fe3+。
2.雜質偶極化及聚合
電場的建立讓雜質具有正負電荷,水中的陰陽離子也會被吸附,被偶極化的雜質和具有膠凝作用的Fe2+/Fe3+離子所吸附或附著,才會造成汙染值的去除。
3.膠羽之形成
被極化之雜質在曝氣槽中與活性離子(Fe2+/Fe3+,Al3+)相互碰撞,產生膠凝作用,形成膠羽。
Large domestic industrial paper mills wastewater after secondary biological treatments generally attain discharging regulations. However, due to the high residual electrical conductivity (> 2000 μs/cm) and the amber coloration, the effluents are suspected to upset the stability of paper machine wet-end chemistry and are inductive to bacterial slime formation if reused, thus leading to unnecessarily high discharging amounts. If water right and effluent discharging fees are imposed by the Environmental Protection Administration, the large amounts of discharging effluent will cause jump in the operational costs.
A pilot pulsed electrocoagulation (EC) unit capable of treating 0.5 to 1.0 m3/h wastewater and having hydraulic retention time (HRT) of 0.2 to 0.25 h comprised of a homogenizing tank, a reaction tank, an aeration tank, a flocculation tank, and a sedimentation tank was use for treatment the wastewaters. The experimental mills selected include a speciality paper mill at Puli (A), with capacity of 5 t/d and effluent discharging amount of 1300 m3/d; a paper core mill at Kuangyin (B) with capacity of 150 t/d and effluent discharging amount of 1800 to 2000 m3/d; and a integrated pulp and paper mill at Hsinyin (C) with capacities for pulp, paper and chemicals at 400, 235, and 110 tons/d, respectively, and an effluent discharging amount of 25000 m3/d.
A lab EC unit with a total volume of 3700 mL using either aluminum or iron as electrodes and electrode spacing of 5 mm, comprised of a homogenizing tank, reaction vessel, and sedimentation tank was also constructed and tested. The effluent treated came from mill D at Houli, which produces mainly core tubes, coated whiteboard, corrugating medium, liners, printing and writing paper and art paper with capacities of 110, 115, 650, 540, 300 and 220 t/d and an effluent discharging amount of 20000 m3/d.
The study was conducted in 2 parts, the first used the pilot reactor fitted with either iron or aluminum electrodes to treat mill effluents, and in the second, the lab EC unit was used. In the second part, the work entails first design and construct the unit, then use the unit to treat mill D effluent for treatment efficacies. Then ion chromatography (IC), and inductively coupled plasma atomic emission spectroscopy (ICP) was used to analyze the ionic species in the effluent before and after treatment and understand the fundamental properties of the effluent. Finally, the operational parameters of the lab EC unit was compared for the treatment efficacies and establishment of reaction mechanism.
The results indicate that the pilot pulsed EC system compared with the traditional effluent treatments could effectively enhance removal of electrical conductivity, SS, COD, and true color. The case of mill A white water during its production of a black-colored specialty paper resulted in electrical conductivity, SS, COD and true color removal of 21.4%, 97.1%, 58.8% and 58.9%, respectively when aluminum electrodes were used. As its white specialty paper production, the aluminum electrode enabled 4.3%, 98.6%, 50.0% and 0% of the above variables. For the mill B effluent, the aluminum electrodes allowed removal of 1.5%, 98.4%, 25.4% and 48.9% of the electrical conductivity, SS, COD and hardness, respectively. The iron electrode, on the other hand, enabled removal of 19.6%, 93.8%, 30.9%, and 47.9% of the same variables, respectively of the same mill effluent.. As for the mill C, the aluminum electrode removed 63.5%, 92.9%, 75.7% and 86.4% of the electrical conductivity, SS, COD and true color for its EO stage wastewater. The corresponding values for iron electrode were 70.1%, 96.4%, 81.1% and 86.6% for the variables, respectively. In order to reduce potential treatment cost, in all cases, no supplemental coagulant polymer was added. Hence, if equipment depreciation rate and personnel costs were discounted, then when the aluminum electrode was used, it required NT$ 2,47/t to treat the mill A’s wastewater. The same for mill B would require NT$ 11.6/t for the case of iron electrode and NT$ 12.4/t for the aluminum electrodes. For the mill C, the same costs were NT$ 0.72 and 1.64, respectively for the iron and aluminum electrodes.
Lab experiments indicated that the lab reactor could effectively increase the removal rates of electrical conductivity, SS, COD, true color, cations and anions. The results for the mill D under the best treatment conditions achieved removal of the first 4 variables at 21.6%, 91.4%, 48.2%, 53.7% efficacies, respectively. Then 49.4% of the effluent hardness, 12.9% of chloride, 15.5% of sulfate, 9.9% of potassium, 6.9% of sodium, 50.0% of aluminum and 0% of ferric/ferrous ions were removed.
The possible reaction mechanism of the treatment entails:
1. Establishment of an electrical field
In the lab reactor, the electrical current generated a field among the alternating anodes and cathodes. Which induced charges in the impurity particles in the effluent. Meanwhile, the electrode plates released ferrous/ferric ions.
2. Charge coupling of impurity particles and aggregation
Establishment of an electrical field enabled the impurity particles to bear induced charges which attracted oppositely charge ions in the water. The charge coupled particles adsorbed or attached to the floc forming ferrous/ferric ions then allowed removal of the pollutants.
3. Formation of flocs
The polarized impurity paticles collided repeatedly in the aeration tank with the activated ions of ferric and aluminum ions to allow flocculation and formed flocs.
封面內頁
簽名頁
授權書  iii中文摘要 iv
英文摘要 vii
誌謝   x
目錄   xi
圖目錄  xvi
表目錄  xx

第一章 前言  1
1.1 研究緣起  1
1.2 研究動機  2
1.3 研究目的  4
第二章 研究內容及背景  6
2.1 造紙廠廢水水質特性  6
2.2 造紙廠之廢水處理單元流程  7
2.2.1 A廠 7
2.2.2 B廠 10
2.2.3 C廠 13
2.2.4 D廠 15
2.3 循環伏安法(CV,cyclic voltammetry) 17
2.4 電化學方法及優點  19
2.4.1 電化學處理反應主要機制 20
2.4.1.1 陽極之氧化作用  20
2.4.1.2 陰極之還原作用 21
2.4.1.3 溶液中之凝聚、水解、浮除作用 21
2.5 電化學處理技術  22
2.5.1 電解氧化法  22
2.5.2 電解浮除法  23
2.5.3 電解膠凝法  24
2.5.4 電解沉積法  25
2.5.5 其他電化學技術 25
2.6 脈衝電凝法  30
2.6.1 脈衝電凝法之原理 30
2.6.2 脈衝電凝法之處理流程 31
第三章 文獻回顧  33
3.1 電氧化處理技術  33
3.2 脈衝電凝系統  44
3.2.1 脈衝電凝法之反應 44
3.2.2 假設反應機構 45
3.3 實驗室級電凝反應器 47
第四章 實驗設計及方法  49
4.1 現場試驗及實驗室實驗紙廠介紹 49
4.1.1 脈衝電凝系統  49
4.1.2 電凝反應器  50
4.2 實驗設計  51
4.2.1 操作參數及檢測項目 54
4.2.1.1 脈衝電凝系統 54
4.2.1.2 實驗室級電凝反應器 55
4.2.2 實驗設備  56
4.2.2.1 脈衝電凝系統 56
4.2.2.2 實驗室級電凝反應器 62
4.3 實驗方法 67
4.3.1 實驗流程及步驟 67
4.3.1.1 脈衝電凝系統 67
4.3.1.2 實驗室級電凝反應器 70
4.3.2 檢測方法  72
4.3.3 實驗設備  72
4.3.4 實驗材料  74
第五章 實驗結果與討論  75
5.1廢水基本資料  75
5.1.1 廢紙種類及化學藥劑分析 75
5.1.2 廢水水質分析  76
5.2 以鐵板或鋁板為電極處理製程廢水 78
5.2.1 各廠操作參數之變化  79
5.3 電流密度及停留時間之影響  80
5.3.1 A廠實驗結果  80
5.3.1.1 對電導度之影響 81
5.3.1.2 對SS之影響 83
5.3.1.3 對COD之影響 86
5.3.1.4 對真色色度之影響 89
5.3.2 B廠實驗結果  94
5.3.2.1 對電導度之影響 94
5.3.2.2 對SS之影響 96
5.3.2.3 對COD之影響 98
5.3.2.4 對硬度之影響 100
5.3.3 C廠實驗結果  104
5.3.3.1 對電導度之影響 104
5.3.3.2 對SS之影響 108
5.3.3.3 對COD之影響 112
5.3.3.4 對真色色度之影響 116
5.4 經濟效益評估及處理成本估算 122
5.4.1 A廠  123
5.4.2 B廠  125
5.4.3 C廠  128
5.5 實驗室模擬廢水基本資料 135
5.5.1 實驗室模擬的廢水水質分析 135
5.5.2 加壓浮除後的廢水水質分析 136
5.6 以鐵板或鋁板為電極處理製程廢水 138
5.6.1 D廠操作參數之變化 138
5.7 預備實驗 139
5.7.1 D廠預備實驗結果 139
5.7.1.1 對電導度之影響 139
5.7.1.2 對SS之影響 140
5.7.1.3 對COD之影響 141
5.7.1.4 對真色色度之影響 142
5.7.1.5 對總硬度之影響 143
5.8 實驗室模擬實驗 146
5.8.1 變異數分析 146
5.8.2 實驗模擬結果 157
5.8.2.1 對電導度之影響 157
5.8.1.2 對SS之影響 160
5.8.1.3 對COD之影響 162
5.8.1.4 對真色色度之影響 164
5.8.1.5 對總硬度之影響 166
5.8.1.6 對Cl-之影響 168
5.8.1.7 對SO42-之影響 170
5.8.1.8 對K+之影響 172
5.8.1.9 對Na+之影響 174
5.8.1.10 對Al3+之影響 176
5.8.1.11 對Fe2+/Fe3+之影響 178
5.9 反應機構 182
第六章 結論與建議  197
6.1 結論 197
6.2 建議 199
參考文獻  200
附錄  205
丁涴屏 (2002)以電-芬頓程序處理含苯環類化合物廢水,碩士論
文,私立嘉南藥理科技大學環境工程衛生系。
水污染防治法規 (2003)行政院環保署環境保護人員訓練所編印。
台灣區造紙工業同業公會統計資料 (2003)。
李士安、王擁軍、王治國、張守健 (2002)鐵床在高色度有機廢水
處理中的應用,環境污染治理技術與設備,3(8):88-90。
林逸汎 (2006)電氧化法應用在工業用紙廠廢水處理之探討,碩士
論文,大葉大學環境工程學系。
胡啟章(2002)電化學原理與方法,五南圖書出版股份有限公司。
陳見財(2003)排放水電導度相關管制法規與控制原理,排放水電
導度控制技術講習會,台北,中技社。
陳彥旻(2003)半導體業化學機械研磨廢水回收處理再利用技術研
究,碩士論文,國立成功大學環境工程系。
陳見財、張資穎、林冠嘉(1997)利用高電壓低電流電解法處理染
整廢水之可行性評估,工業污染防治工程實務技術研討會,台
北,中技社。
陳見財(1997)利用高壓脈衝電凝法處理染整廢水之可行性評估,台北,中技社。
彭元興、王益真、余世宗、史濟元、林逸汎、陳威存(2005)電氧
化法應用在工業用紙廠廢水之探討,第三十屆廢水技術研討會:
136,中壢,中華民國環境工程學會。
彭元興、王益真、史濟元、張安毅、林逸汎 (2004)工業用紙廠
廢水回收再利用探討-先驅廠及脈衝電集系統的應用,清潔生產
暨永續發展研討會,台北,經濟部工業局。
彭元興 (1992)電化學在製漿造紙的應用,漿與紙,13(6):5-25。
傑世脈衝電集廢水全自動處理系統型錄 (2004)傑世環保科技工
程有限公司。
張安毅(2005)脈衝電集法在工業用紙廠廢水之應用,碩士論文,
大葉大學環境工程學系。
黃順興 (1999)電聚浮除法處理氯苯之探討,碩士論文,淡江大
學水資源及環境工程系。
彭元興、王益真、余世宗、史濟元、謝元昌、楊逸婷 (2006)先
驅廠級脈衝電凝系統在紙管用紙廠廢水回收在利用探討,第三十
一屆廢水技術研討會:57,中華民國環境工程學會,台中。
詹佩珍(2002)製紙廠廢水處理單元最適化操作條件之建立-利用
田口品質工程評,碩士論文,國立高雄第一科技大學環境與安全
衛生工程系。
趙春霞、邱熔處、趙旭濤、劉發強 (2004)鐵碳微電解法處理拉
開粉廢水的研究,環境污染治理技術與設備,5(4):73-75。
鄭華安 (2000)工業區廢水二級處理放流水回收再利用技術研究,
碩士論文,國立成功大學環境工程系。
歐陽玉祝、傅偉昌 (2003)鐵屑微電解-共沉澱法處理屠宰場廢水
的研究,環境污染治理技術與設備,4(8):37-40。
謝長原 (2002)電解催化氧化氯酚之研究,碩士論文,國立成功
大學環境工程系。
蘇拾生 (1997)EPN電聚浮除法處理技術介紹,工業污染防治,
62:168-183。
Abuzaid NS, Alaadin AB, Zakariya MAH (2002). Ground water coagulation using soluble stainless steel electrodes. Adv Env Res 6:325-333.
Adhoum N, Monser L, Bellakhal N, Belgaied JE (2004). Treatment of electroplating wastewater containing Cu2+, Zn2+ and Zn(VI) by electrocoagulation. J Haz Mat B112:207-213.
Bejankiwar RS (2002). Electrochemical treatment of cigarette industry wastewater:feasibility study. Wat Res Technol 36:4386-4390.
Brillas E and Casado J (2002). Aniline degradation by Electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemophere 47:241-248.
Chen G (2004). Electrochemical technologies in wastewater treatment. Sep Pur Technol 38:11-41.
Costaz P, Miquel J, Reinbold M (1983). Simultaneous Electro-Flotation and Disinfection of Sewage. Wat Res Technol 17(3):255-262.
Chiang LC, Chang JE, Wen TC (1995). Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Wat Res Technol 29(2):671-678.
Feng C, Sugiura N, Shimada S, Maekawa T (2003). Development of a high performance electrochemical wastewater treatment system. J Haz Mat B103:65-78.
Fockedey E and Van Lierde A (2002). Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Wat Res 36:4169-4175.
Gao P, Chen X, Shen F, Chen G (2005). Removal of chromium(VI) from wastewater by combined electrocoaguiation-electroflotation without a filter. Sep Pur Technol 43:117-123.
Hu KH, Hu PY, Hu PC (2001). Electrolytic Wastewater Treatment Method and Apparatus. US Patent 6,274,028 B1.
Hu KH, Hu PY, Hu PC (2003). Electrolytic Wastewater Treatment Apparatus. US Patent 6,554,977 B2.
Holt P, Barton G, Mitchell C (1999). Electorcoagulation as a weasewater treatment. The Third Annual Australian Environmental Engineering Research Event, 23-26 November Castlemaine, Victoria.
Hansen HK, Núñez P, Grandon R(2006). Electrocoagulation as a remediation tool for wastewaters containing arsenic. Minerals Engineering 19:521-524.
Juttner K, Galla U, Schmieder H (2000). Electrochemical approaches to environmental problems in the process industry. Elec Acta 45:2575-2594.
Kraft A, Stadelmann M, Blaschke M (2003). Anodic oxidation with doped diamond electrodes: a new advance oxidation process. J Haz Mat B7103:247-261.
Lai CL, Lin SH (2006). Sludge conditioning characteristics of copper chemical mechanical polishing wasterwater treated by electrocoagulation. J Haz Mat B136:183-187.
Monica MD, Agostiano A, Ceglie A (1980). An electrochemical sewage treatment process. J Appl Elecrochem, 10:527-533.
Mollah MYA, Morkovsky P, Gomesc JAG, Kesmez M, Parga J, Cocke DL (2004). Fundamentals, present and future perspectives of electrocoagulation. J Haz Mat B114 199–210.
Oloman, CW (1992). Electrochemical synthesis and separation technology in the pulp and paper industry. The Sixth International Forum on Electrolysis in the Chemical Industry, Fort Lauderdale, Florida.
Pouet M-F and Grasmick A (1995). Urban wastewater treatment by electrocoagulation and flotation. Wat Res Technol 31(3-4):275-283.
Pouet M-F, Persin E, Rumeau M (1992). Intensive treatment by electrocoagulation-flotation-tangential flow microfiltration in area of high seasonal population. Wat Sci Technol, 25(12):247-253.
Pokhrel D and Viraraghavan T (2004). The treatment of pulp and paper mill wastewater: a review. Sci Total Environ 333:37-58.
Perng YS, Oloman CW, James BR (1993). The effect of metal complexes in the electrochemically mediated oxygen bleaching of wood pulp. Tappi J, 76(10):139.
Robinson V (1999). Electrofloatation in the treatment of polluted water. Australian Water Watewater Association, 22-24 November Wodonga, Victoria.
Saracco G, Solarino L, Specchia V, Maja M (2001). Electrolytic abatement of biorefractory orangics by combining bulk and electrode oxidation process. Chem Eng Sci 56:1571-1578.
Sukamto JH, Rassat SD, Josephson GJ, Lawrence WE, Mendoza DP, Viswanathan VV, Hallen RT, Orth RJ, Lilga MA (1999). Electrically Switched Ion Exchange(ESIX)for the removal of potassium to enhance water recycle opportunities. Pacific Northwest National Laboratory Richland, Washington.
Thompson G, Swain J, Kay M, Forster CF (2001). The treatment of pulp and paper mill effluent: a review. Bio Technol 77:275-286.
Xu X and Zhu X (2004). Treatment of refectory oily wastewater by electro-coagulation. Chemosphere 56:889-894.
Xiong Y, He C, Karlsson HT, Zhu X (2003). Preformance of three-phase three-dimensional electrode reactor for thereduction of COD in Simulated wastewater-containing phenol. Chemosphere 50:131-136.
Yang, CL (2000). Removal of chromium from abrasive blast media by leaching and electrochemical precipitation. J Air Waste Manage 50(4):536-542.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top