跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/06 00:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陶紅海
研究生(外文):Dao, Hong Hai
論文名稱:以光催化反應器分解室內空氣之甲苯
論文名稱(外文):Decomposition of Indoor Gaseous Toluene Using Photocatalytic Reactor
指導教授:林啟文林啟文引用關係姚品全姚品全引用關係
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:79
中文關鍵詞:色素增感型TiO2室內空氣光催化甲苯可見光
外文關鍵詞:indoor airphotocatalyticdye-sensitized TiO2toluenevisible light
相關次數:
  • 被引用被引用:1
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:191
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討二氧化鈦可見光觸媒對於低濃度甲苯之光催化分解特性。使用3種不同光觸媒塗層,分3階段進行系統測試。第一階段研究使用兩種觸媒塗層,合成方法包括:(1)以四異丙酮基鈦(Titanium tetraisopropoxide)為先驅物,以溶凝膠法合成二氧化鈦鍍膜液,並以浸鍍法(dip-coating)塗布於玻璃管內壁,以製作光觸媒塗層;(2)以Degussa P25添加適量水與界面活性劑調配鍍膜液,其餘方法同(1)。測試時反應器照射低強度紫外線(300~400nm)。結果顯示:兩種光觸媒皆能有效分解低濃度甲苯,然而當甲苯濃度增加,則相同反應條件下之甲苯分解率明顯降低,尤其是Degussa P25鍍膜系統,當甲苯初始濃度由0.5 ppm增至6 ppm時,甲苯分解率隨之由88%降至8%。相較之下,以溶凝膠法合成之二氧化鈦光觸媒,更能有效分解較高濃度之甲苯,當甲苯初始濃度增至2 ppm(氣體流量為200 ml min-1)時,在相同紫外線照射下,仍可將其完全分解。
第2階段測試系統使用色素增感型(Dye-sensitized) TiO2可見光觸媒,TiO2可為Degussa P25或溶凝膠法合成之TiO2奈米粒子塗層,光源使用家用日光燈。結果顯示:僅以溶凝膠法合成之Dye-sensitized TiO2奈米光觸媒塗層於可見光照射時呈現明顯之光觸媒活性,但活性較第1階段測試系統使用者為差。在低甲苯初始濃度時(甲苯濃度0.5 ppm,氣體流量200 ml min-1),甲苯分解率僅達35%。值得注意的是:當上述Degussa P25合成之Dye-sensitized TiO2奈米光觸媒塗層經過酸處理後,該系統開始顯現可見光光觸媒活性,在低甲苯初始濃度時(甲苯濃度0.5 ppm,氣體流量200 ml min-1),甲苯分解率達48% ,顯現酸處理對此型觸媒活性之影響。
為了比較上述自行合成之光觸媒與商用觸媒活性之異同,第2階段測試以廠商所提供之商用光觸媒樣品(Ag/TiO2)進行相同條件之測試,以為對照。結果顯示:此一樣品於可見光照射時,對於低濃度甲苯幾乎沒有光催化活性。
In the present study, indoor level of gaseous toluene was decomposed by TiO2-based visible light photocatalyts among which TiO2 thin film was synthesized via a sol-gel method by using Titanium tetraisopropoxide (TTIP) as the precursor following by dip-coating process. In the Phase 1 study, the experiments were conducted in a bench scale glass cylindrical reactor illuminated by 300-400 nm UV light. The results indicated that low concentration of gaseous toluene was decomposed significantly by using TiO2 thin film prepared from both degussa P25 and TTIP. As the initial toluene concentrations were varied from 0.5 ppm to 6 ppm, the overall decomposition rate for UV-illuminated Degussa P25 was decreased approximately from 88% to 8%. As a comparison, sol-gel TiO2 films prepared from TTIP showed more efficient photocatalytic ability under extremely low concentration at which 2 ppm toluene were decomposed completely at the gaseous flow rate of 200 mL min-1. In the Phase 2 study, dye-sensitized TiO2 photocatalysts were tested under visible light illumination. The experimental results showed that dye-sensitized TiO2 photocatalysts prepared from TTIP can work under visible light illumination but its removal efficiency was not high. It was approximately 35% for toluene at 0.5 ppm. The results also indicated that dye-sensitized P25 with acid treatment can decompose low concentration of gaseous toluene and its removal efficiency was approximately 48% for toluene at 0.5 ppm but dye-sensitized P25 without acid treatment only works under UV-illuminated conditions. The commercial photocatalyst of Ag/TiO2 was also tested but the results indicated that it almost can not decompose gaseous toluene at low concentration under visible light illumination.
ABSTRACT…….………………………………………………….............................iv
中文摘要…………………………………………………........................................vi
ACKNOWLEGMENTS..………………………………………………..…………...vii
LIST OF TABLES……………………………………………...………………….....xi
LIST OF FIGURES………………………………………………...………………...xii
LIST OF ABBREVIATIONS..…….…………………………………………………xv
Chapter I INTRODUCTION 1
1.1 Introduction 1
1.2 Motivation 3
1.3 Objectives 4
Chapter II LITERATURE REVIEW 5
2.1 Toluene identification 5
2.1.1 Chemical identity of toluene 5
2.1.2 Physical and chemical properties 7
2.2 Analytical methods 9
2.3 Sources and toxicity 11
2.3.1 Indoor sources emission 11
2.3.2 Indoor concentration 12
2.3.3 Environmental fate 12
2.3.4 Health effects 13
2.4 Guidelines and available technologies 14
2.4.1 Guidelines for toluene 14
2.4.2 Available technologies of reducing indoor toluene 15
2.5 Photocatalysis 18
2.5.1 Electronic band structures in semiconductor for photocatalysis 18
2.5.2 Photocatalytic oxidation mechanism of catalysts 19
2.5.3 Photocatalytic oxidation mechanism of TiO2 with UV-light 20
2.5.4 Limitation of TiO2 as efficient photocatalyst and modification of TiO2 21
2.5.4-1 Metal semiconductor modification 22
2.5.4-2 Composite semiconductors 24
2.5.5 Sensitized TiO2 photocatalyst 25
2.6 Ultraviolet light and visible light 27
2.7 Toluene suggested degradation pathways 28
Chapter III MATERIALS AND METHODS 30
3.1 Photocatalyst coating methods 30
3.1.1 TiO2 coating phase 30
3.1.1-1 Preparation of sol-gel TiO2 from Titanium (IV) Isopropoxide 30
3.1.1-2 Preparation of sol-gel TiO2 from TiO2 P25 Degussa 32
3.1.1-3 TiO2 coating procedure 32
3.1.2 Dye sensitized-TiO2 coating phase 33
3.2 Experimental setup 34
3.2.1 Materials 34
3.2.2 Reactors and experiment system 35
3.2.3 Description of experiment 38
3.2.4 Analytic method 39
3.2.5 Program of experiments 42
Chapter IV RESULTS AND DISCUSSION 44
4.1 The absorption of gaseous toluene on inner surface of glass tube 44
4.1.1 Blank reactor without UV-illumination 44
4.1.2 Blank reactor under UV-illumination 45
4.2 Decomposition of toluene using TiO2 photocatalyst 46
4.2.1 Performance of reactor using P25 photocatalyst 46
4.2.2 Performance of reactor using Sol-gel TiO2 photocatalyst 48
4.2.3 Kinetics of photocatalytic oxidation 51
4.3 Decomposition of toluene using dye-sensitize TiO2 photocatalyst 55
4.3.1 Reactor using dye-sensitized sol-gel TiO2 55
4.3.2 Reactor using dye-sensitized P25 57
4.3.3 Reactor using dye-sensitized P25 with acid treatment 59
4.3.4 Performance of reactor using Ag/TiO2 photocatalyst 60
Chapter V CONCLUSION 64
5.1 Conclusion 64
5.2 Recommendation 64
5.2.1 Photocatalyst 64
5.2.2 Experimental conducting condition 65
REFERENCES 66
ACGIH, 1997. TLV’s and BEIs: Threshold limit values for chemical substances and physical agents. Biological Exposure Indices. American Conference of Governmental Industrial Hygienists, Inc. Cincinnati, OH. 38 – 39, 69, 89.

Altshuller, A.P., Lonneman, W.A., Sutterfield, F.D., Kopczynski, S.L., 1971. Hydrocarbon composition of the atmosphere of the Los Angeles Basin-1967. Environmental Science Technology 5(10), 1009 – 1016.

Andersen, I., Lundqvist, G.R., Molhave, L., et al. 1983. Human response to controlled levels of toluene in six-hour exposures. Scandinavian journal of work, environment & health 9, 405 – 418.

Anderson, M.A., 1992. Influence of surfactants on vapor-liquid partitioning. Environmental Science & Technology 26, 2186 – 2191.

Arai, Y., Tanaka, K., Khlaifat, A.L., 2006. Photocatalysis of SiO2-loaded TiO2. Journal of Molecular Catalysis A: Chemical 243, 85 – 88.

ATSDR, 2000. Agency for Toxic Substances and Disease Registry. Toxicological profile for toluene. Update. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L., Schiavello, M., 1999. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation. Applied Catalysis B: Environmental 20, 15 – 27.
Bae, H., Yang, W., Chung, M., 2004. Indoor and outdoor concentrations of RSP, NO2 and selected volatile organic compounds at 32 shoe stall located near busy roadways in Seoul, Korea. Science of the Total Environment 323, 99 – 105.

Balfour, W.D., Wetherold, R.G., Lewis, D.L., 1984. Evaluation of air emissions from hazardous waste treatment, storage and disposal facilities. Cincinnati, OH: U.S. Environmental Protection Agency, Land Pollution Control Division, Hazardous Waste Engineering Research Laboratory, Office of Research and Development.

Batterman, S., Hatzivasilis, G., Jia, C., 2006. Concentrations and emissions of gasoline and other vapors from residential vehicle garages. Atmospheric Environment 40, 1828 – 1844.

Bayarri, B., Gimenez, J., Curco, D., Esplugas, S., 2006. Photocatalytic degradation of 2, 4-dichlorophenol by TiO2/UV: Kinetics, actinometries and models. Catalysis Today 101, 227 – 236.

Budavari, S., O’Neil, M., Smith, A., (Eds.), 1989. The Merck index: An encyclopedia of chemicals, drugs, and biologicals (11th ed.). Rahway, NJ: Merck and Company, Inc., 1501.

Chao, C.Y.H., Kwong, C.W., Hui, K.S., 2007. Potential use of a combined ozone and zeolite system for gaseous toluene elimination. Journal of Hazardous materials, in press.

Cheng, P., Li, W., Zhou, T., Jin, Y., Gu, M., 2004. Physical and photocatalytic properties of zinc ferrite dope titania under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 168, 97 – 101.

Cho, Y., Choi, W., Lee, C.H., Hyeon, T., Lee, H.I., 2001. Visible light-induced degradation of carbon Tetrachloride on Dye-Sensitized TiO2. Environmental Science & Technology 35, 966 – 970.

Crist, H.L., Mitchell, W.J., 1986. Field audit results with organic gas standards on volatile organic ambient air samplers equipped with Tenax GC. Environmental Science & Technology 20(2), 1260 – 1262.

Davis, D.D., Heaps, W., Philen, D., Mcgee, T., 1979. Boundary layer measurements of the OH radical in the vicinity of an isolated power plant plume: SO2 and NO2 chemical conversion times. Atmospheric Environment 13, 1197 – 1203.

Davis, R., Bickers, M.D., 1989. Sunlight, Ultraviolet Radiation, and the Skin. National Institutes of health Consensus Development Conference Statement 7(8), 1 – 29. At online:
http://palimpsest.stanford.edu/bytopic/health/uvnih.html.

De Rivas, B., Gutierrez-Ortiz, J.I., Lopez-Fonseca, R., Gonza;ez-Velasco, J.R., 2006. Analysis of the simultaneous catalytic combustion of chlorinated aliphatic pollutants and toluene over ceria-zirconia mixed oxides. Applied Catalysis A: General 314, 54 – 63.

Dewulf, J., Van Langenhove, H.V., 1997. Chlorinated C1- and C2-hydrocarbons and monocyclic aromatic hydrocarbons in marine waters: An overview on fate processes, sampling, analysis and measurements. Water Research 31(8):1825 – 1838.

Dilling, W.L., Bredeweg, C.J., Tefertiller, N.B., 1976. Simulated atmospheric photodecomposition rates of methylene chloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene and other compounds. Environmental Science Technology 10(4), 341 – 356.

Ding, H., Sun, H., Shan, Y., 2005. Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry 169, 101 – 107.

EMMI, 1997. Environmental monitoring methods index. Version 1.1.PC#4082. Rockville, MD: US Environmental Protection Agency, Government institutes.

Falconer, J.L., Magrini-Bair, K.A., 1998. Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO2. Journal of Catalysis 179, 171 – 178.

Fujishima, A., Rao, T.N., Tryk, D.A., 2000. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1(1), 1 – 21.

Girman, J.R., Hadwen, G.E., Burton, L.E., Womble, S.E., McCarthy, J.F., Individual volatile organic compound prevalence and concentrations in 56 buildings of the building assessment survey and evaluation (base) study. Proceeding of Indoor Air 1999, II, pp. 460 – 465.

Godish, T., 1989. Indoor air pollution control. Lewis Publishers, Michigan.
Gratzel, M., 2001. Photoelectrochemical cells. Nature 414, 338 – 344.
Heikes, D.L., Jensen, S.R., Fleming-Jones, M.E., 1995. Purge and trap extraction with GC-MS determination of volatile organic compounds in table-ready foods. Journal of Agricultural and Food Chemistry 43(11), 2869 – 2875.

Hess-Kosa, K., 2002. indoor air quality: Sampling methodologies. Boca Raton, FL.: Lewis Publishing.

Hippelein, M., 2006. Analysing selected VOCs in indoor air with solid phase microextraction (SPME): A case study. Chemosphere 65, 271 – 277.

Hodgson, A.T., Shimer, D.A., 1999. Techniques for reducing exposures to volatile organic compounds associated with new construction and renovation. Proceeding indoor air 99, The 8th International Conference on Indoor Air Quality and Climate, Edinburgh, Scotland, Vol. 4, pp. 622 – 627.

Hodgson, A.T., Fisk, W.J., Shendell, D.G., Apte, M.G., 2001. Predicted concentrations in new relocatable classrooms of volatile organic compounds emitted from standard and alternate interior finish materials. Lawrence Berkeley National Laboratory. Paper LBNL-48490. Online at: http://repositories.cdlib.org/lbnl/LBNL-48490.

Hodgson, A.T., 2003. Volatile organic chemical emissions from structural insulated panel (SIP) materials and implications for indoor air quality. Lawrence Berkeley National Laboratory. Paper LBNL-53768. Online at: http://repositories.cdlib.org/lbnl/LBNL-53768.

Hoffmann, M.R., Martin, S.T., Choi,W., Bahnemann, D.W., 1995. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 95(1), 69 – 96.

Hoshino, M., Akimoto, H., Okuda, M., 1978. Photochemical oxidation of benzene, toluene and ethylbenzene initiated by OH radicals in the gas phase. Bulletin of the Chemical Society of Japan 51(3), 718 – 724.

Howard, P.H., 1990. Handbook of environmental fate and exposure data for organic chemicals Vol. II. Solvents. Chelsea, MI: Lewis Publishers, Inc.

HSDB, 1998. Hazardous Substances Data Base – computer printout for toluene. National Library of Medicine, National Toxicology Information Program, Bethesda, MD.

IRIS, 2000. Toluene. Integrated Risk Information System, U.S. Environmental Protection Agency. November 8, 1999.
http://www.epa.gov/iris/subst/index.html.

Irusta, S., Pina, M.P., Menendez, M., Santamaria, J., 1998. Catalytic combustion of volatile organic compounds over La-Bassed Perovskites. Journal of Catalysis 179, 400 – 412.

Jaffrezic-Renault, N., Pichat, P., 1986. Effect of deposited Pt particles on the surface charge of TiO2 aqueous suspensions by potentionmetry, electrophresis, and labeled ion absorption. Journal of Physical Chemistry 90, 2733 – 2738.

Jones, A.P., 1999. Indoor air quality and health. Atmospheric Environment, 33(28), 4535 – 4564.

Jwo, C.S., Tien, D.C., Chen, L.C., Teng, T.P., Chang, H., Lin, C.H., Tsung, T.T., 2005. Photodecomposition of gaseous toluene using TiO2 prepared by SANSS. Journal of Physics: Conference Series 13, 438 – 441.

Kamat, P.V., Fox, M.A., 1983. Photosensitization of TiO2 colloids Erythrosine B in acetonitrile. Chemical Physics Letters 102(4), 379 – 384.

Keshmiri, M., Troczynsky, T., Mohseni, M., 2006. Oxidation of gas phase trichloroethylene and toluene using composite sol-gel TiO2 photocatalytic coatings. Journal of Hazardous Materials B128, 130 – 137.

Kim, J.H., Seo, G., Cho, D.L., Choi, B.C., Kim, J.B., Park, H.J. Kim, M.W., Song, S.J., Kim, G.J., Kato, S., 2006. Development of air purification device through application of thin-film photocatalyst. Catalysis today 111, 271 – 274.

Kimura, H., Taniai, T., Satozaki, K., Umezawa, M., Komine, H., 2005. A study on the modeling method of the time-series emission rate of toluene and xylene from paints. Proceeding of Indoor Air 2005, pp. 1919 – 1924.

Kjaergaard, R.K., Molhave, L., Pedersen, O.F., 1991. Human reactions to a mixture of indoor air volatile organic compounds. Atmospheric environment 25A(8), 1417 – 1426.

Lee, S.Y., Park, J., Joo, H., 2006. Visible light-sensitized photocatalyst immobilized on beads by CVD in a fluidizing bed. Solar Energy Material & Solar Cells 90, 1905 – 1914.
Li, F., Niu, J., Zhang, L., 2006. A physically-based model for prediction of VOCs emissions from paint applied to an absorptive substrate. Building and Environment 41, 1317 – 1325.

Li, F.B., Li, X.Z., 2002. The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere 48, 1103 – 1111.

Linsebigler, A.L., Lu, G., Yates, J.T., 1995. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews 95(3), 735 – 758.

Luo, Y., Ollis, D.F., 1996. Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixture in air: Kinetic promotion and inhibition, Time-dependent catalyst activity. Journal of Catalysis 163, 1 – 11.

Marci, G., Addamo, M., Augugliaro, V., Coluccia, S., Garcia-Lopez, E., Loddo, V., Martra, G., Palmisano, L., Schiavello, M., 2003. Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air water and in water containing a zwitterionic surfactant. Journal of Photochemistry and photobiology A: Chemistry 160, 105 – 114.

Matthews, R.W., 1978. Photooxidation of organic impurities in water using thin films of titanium dioxide. Journal of Physical Chemistry 91(12), 3328 – 3333.

Michael, L.C., Pellizzari, E.D., Wiseman, R.W., 1988. Development and evaluation of a procedure for determining volatile organics in water. Environmental Science & Technology 22(5), 565 – 570.
Molhave, L., Jensen, J.G., and Larsen, S., 1991. Subjective reactions of volatile organic compounds as air pollutants. Atmospheric Environment, 25A(7), 1283 – 1293.

NFPA, 1994. Fire protection guide to hazardous materials (11th ed). National Fire Protection Association. Quincy, MA.

NIOSH, 1986. NIOSH recommendations for occupational safety and health standards. Atlanta, GA: U.S. Department of Health and Human Services, National Institute for Occupation Safety and Health.

NIOSH, 1994. NIOSH manual of analytical methods 4th edition. U.S. Department of Health and Human Services, Public Health Service, Center for Disease Control and Prevention, National Institute for Occupational Safety and Health.

OEHHA, 1997. Technical Support Document for the Determination of Noncancer Chronic Reference Exposure Levels - Toluene. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, California, USA.

Patrick, B., Kamat, P.V., 1992. Photoelectrochemistry in semiconductor particulate systems. 17. Photosensitization of large-bandgap semiconductor: charge injection from triplet excited thionine into zinc oxide colloids. The journal of Physical Chemistry 96(3), 1423 – 1428.

Ribeiro, M.F., Silva, J.M., Brimaud, S., Antunes, A.P., Silva, E.R., Fernandes, A., Magnoux, P., Murphy, D.M., 2006. Improvement of toluene catalytic combustion by addition of cesium in copper exchanged zeolites. Applied Catalysis B Environmental 70, 384 – 392.

Rymes, J., Ehret, G., Hilarie, L., Boutonnet, Jiratova, K., 2002. Microemulsions in the preparation of highly active combustion catalysts. Catalysis Today 75, 297 – 303.

RTECS, 1998. Toluene. Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health.

Sakthivel, S., Shankar, M.V., Palanichamy, M., Arabindoo, B., 2004. Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research 38, 3001 – 3008.

Sano, T., Negishi, N., Takeuchi, K., Matsuzawa, S., 2004. Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator. Solar Energy 77, 543 – 552.

Sato, S., White, J.M., 1980. Photocatalytic production of hydrogen from water and Texas lignite by use of a platinized titania catalyst. Industrial and Engineering Chemistry, Product Research and Development 19, 542 – 544.

Sax, N.I., Lewis, R.J., (Eds.), 1989. Dangerous properties of industrial materials, Vol. III, (7th ed.). New York, NY: Van Nostrand Reinhold, 3287.

Schaeffer, W.H., Bhooshan, B., Sonenthal, J.S., Hodgson, A.T., 1996. Characterization of volatile organic chemical emissions from carpet cushions. Journal of Air & Waste Management Association 46, 813 – 820.
Sclafani, A., Mozzanega, M.N., Pichat, P., 1991. Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol. Journal of Photochemistry and Photobiology A: Chemistry 59(2), 181 – 189.

Srinivasan, S.S., Wade, J., Stefanakos, E.K., 2005. Visible light photocata;ysis via nano-composite CdS-TiO2 materials. Material Research Society Symposium Proceeding 876E, R5.2.1 – R5.2.8.

Stefaniak, A.B., Breysse, P.N., Murray, M.P.M., Rooney, B.C., Schaefer, J., 2000. An evaluation of employee exposure to volatile organic compounds in three photocopy centers. Environmental Research Section A 83, 162 – 173.

Subrahmanyam, Ch., Renken, A., Kiwi-Minsker, L., 2006. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma, part II. Optimized catalytic electrode and operating conditions. Applied Catalysis B: Environmental 65, 157 – 162.

Tansel, B., and mitrani, J.D., 2001. Effectiveness of HVAC dust cleaning procedures in improving indoor air quality. Environmental Monitoring and Assessment, 72(3), 265 – 276.

U.S. Congress, 1990. Clean air act amendments. Title III-hazardous air pollutants, Section 112, national emissions standards for hazardous air pollutants. Public Law 101-549.

U.S. EPA, 1981. Exposure and risk assessment for toluene. Final Draft Report. Washington DC: U.S. Environmental Protection Agency. Office of Water Regulations and Standards.

U.S. EPA, 1982. Purgeables-method 624. Methods for organic chemical analysis of municipal and industrial wastewater. Cincinnati, OH: U.S. Environmental Protection Agency. Environmental Monitoring and Support Laboratory EPA624-1- 624-12.

U.S. EPA, 1987. Health advisory for toluene. Washington DC: Office of Drinking Water, U.S. Environmental Protection Agency. March 31.

U.S. EPA, Office of Air and Radiation, 1989. Report to Congress on Indoor Air Quality, Volume II: Assessment and Control of Indoor Air Pollution.

U.S. EPA, 1991. Method 502.2. Volatile organic compounds in water by purge and trap capillary column gas chromatography with photo ionization and electrolytic conductivity detectors in series. In: Methods for the determination of organic compounds in drinking water. Cincinnati, OH. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory. EPA 600/4-88/039.

U.S. EPA, 1992. Lists of hazardous wastes U.S. Environmental Protection Agency. Code of Federal Regulations. 40 CAR 261.3.

U.S. EPA, 1992. Public notification. U.S. Environmental Protection Agency. Code of Federal Regulations. 40 CAR 141.32.

U.S. EPA, 1996. National emission standards for hazardous air pollutants from petroleum refineries. U.S. Environmental Protection Agency. Code of Federal Regulations. 40 CFR 63, Subpart CC.

Verschueren, K., (Ed.), 1977. Handbook of environmental data on organic chemicals (1st ed). New York, NY: Van Nostrand Reinhold Company, 592 – 596.

Vlachopoulos, N., Liska, P., Augustynski, J., Graetzel, M., 1988. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. Journal of the American Chemical Society 110(4), 1216 – 1220.

Wakeham, S.G., Davis, A.C., Karas, J.L., 1983. Mesocosm experiments to determine the fate and persistence of volatile organic compounds in coastal seawater. Environmental Science & Technology 17(10), 611 – 617.

Wang, J., Ma, T., Zhang, G., Zhang, Z., Zhang, X., Jiang, Y., Zhao, G., Zhang, P., 2007. Preparation of novel TiO¬2 catalyst doped with upconversion luminescence agent and investigation on degradation of acid red B dye using visible light. Catalysis Communication 8, 607 – 611.

Weast, R.D., 1989. Saturniidae. Ecological and behavioral observations of select Attacini. Self-published. Johnston, Iowa. pp53.

WHO, 1985. Environmental health criteria 52. Toluene. Geneva, Switzerland: World Health Organization.

WHO, 1989. Guideline for predicting dietary intake of pesticide residues. Word Health Organization, Geneva.

Zavalic, M., Mandic, Z., Turk, R., et al., 1998. Quantitative assessment of color vision impairment in workers exposed to toluene. American Journal of Industrial Medicine 33 (3), 297 – 304.

Zhang, F., Chen, J., Zhang, X., Gao, W., Jin, R., Guan, N., 2004. Simple and low-cost preparation method for highly dispersed Pd/TiO2. Catalysis Today 93 – 95, 645 – 650.

Zhang, Y., Crittenden, J.C., Hand, D.W., Perram, D.L., 1995. Fixef-bed photocatalysts for solar decontamination of water. Environmental Science & Technology 28(3), 435 – 442.

Zuo, G.Z., Cheng, Z.X., Chen, H., Li, G.W., Miao, T., 2006. Study on photocatalytic degradation of several volatile organic compounds. Journal of Hazardous materials B128, 158 – 163.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊