跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建全
研究生(外文):Chien-Ch'uan Chen
論文名稱:造紙廠廢水污泥及混合廢棄物熱裂解之研究
論文名稱(外文):Study on Pyrolysis of Sludge and Waste Mixtures from the Paper Industry
指導教授:吳照雄
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:130
中文關鍵詞:熱裂解造紙廠污泥混合廢棄物
外文關鍵詞:paper industrymix wastepyrolysissludge
相關次數:
  • 被引用被引用:2
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討造紙廠廢水污泥與廢棄物在氮氣中熱裂解之情形,分析產物組成及探討以化學原料或氣、液體燃料方式資源回收之可行性;研究內容除了探討熱裂解反應動力模式之外,並檢測產物種類與濃度分佈。在動力分析方面,利用不同的升溫速率(分別為2、5及10 K/min),進行熱重量分析實驗。動力分析結果顯示,污泥在氮氣環境中熱裂解反應為三階段反應,其總反應可表示如下:
dX=0.42dX1/dt+0.38dX2/dt+0.2dX3/dt
dX1/dt=9.17×1013exp(-40.33/(RT))(1-X1)7.04
dX2/dt=1.86×1011exp(-36.47/(RT))(1-X2)6.76
dX3/dt=3.33×1010exp(-52.57/(RT))(1-X3)0.48

在加熱速率2、5與10 K/min下,以比例加總方式模擬混合廢棄物(含污泥與不含污泥)在氮氣中熱裂解之情形,其計算值與實驗値間之決斷係數,混合廢棄物(含污泥)分別為0.997、0.997與0.994;混合廢棄物(不含污泥)分別為0.996、0.997與0.996。
產物分析方面,由污泥與混合廢棄物(含污泥與不含污泥)恆溫熱裂解之固、液與氣體百分比得知,固體殘餘物隨著反應溫度的升高而減少,液體產物比例隨反應溫度升高而提高,其比例變化量不明顯,氣體產物比例則隨反應溫度升高而有顯著的提高。總氣體成分中皆含有氫氣、一氧化碳、二氧化碳、甲烷、乙烯等物種。以混合廢棄物(不含污泥)經裂解後,總有機氣體產物最大濃度為2959 ppm;固體殘餘物的熱値與固定碳含量呈現正比關係。造紙廠廢水污泥與廢棄物在氮氣中熱裂解後產物(固體殘餘物、液與氣體產物)回收率都在85%以上。
The pyrolysis of the sludge and waste from the paper industry was investigate in this study. The pyrolysis products were analyzed to evaluate the probability for resources recycling as a chemical and gas-liquid fuels. The conents in this study include establish of the pyrolysis model as well as analyzing the pyrolysis products and the distributions of the product concentration. For the kinetic analyzes, the thermogravimetic analysis experiments were performed at the heating rates of 2, 5 and 10 K/min. The results indicated that the pyrolysis of sludge in nitrogen environment is a three-stage reaction, which can be expressed as followings.
dX=0.42dX1/dt+0.38dX2/dt+0.2dX3/dt
dX1/dt=9.17×1013exp(-40.33/(RT))(1-X1)7.04
dX2/dt=1.86×1011exp(-36.47/(RT))(1-X2)6.76
dX3/dt=3.33×1010exp(-52.57/(RT))(1-X3)0.48

Under the heating rates of 2, 5 and 10 K/min, the total rate equations of waste mixs pyrolysis (including sludge and not including sludge ) in N2 environment can be expressed the sum of the individual rate equations according to the mass percentages if its. The coefficients of determination were 0.997, 0.997 and 0.994 for pyrolysis of waste mixs(including sludge), and 0.996, 0.997, and 0.996 for for pyrolysis of waste mixs(not including sludge), respectively.

For the products analysis, the percentages of solid, liquid, and gases products were obtained for sludge and waste mixyures(including sludge and not including sludge) pyrolysis at constant temperature. The results also indicated that the soild residues reduced as the pyrolysis temperature increased. The total amount of liquid products increased as the pyrolysis temperature increased. But its add met obvious. The total amount of gases products increased significantly with the pyrolysis temperature increased. H2,CO,CO2,CH4,C2H4 were main specites is the gases products. The maximum concentration of hydrocarbons 2959 ppm for waste mixture (not including sludge) pyrolysis reaction. The calorific values of solid residues were to present a positive rulable ship to the content of fixed carbon. The percent recoverys were above 85% for pyrolysis of the sludge and waste from the paper industry.
封面內頁
簽名頁
授權書……………………………………………………………….iii
中文摘要……………………………………………………...……..iv
英文摘要…………………………………………………………….vi
誌謝………………………………………………………………...viii
目錄…………………………………………………………..……...ix
圖目錄………………………………………………………...…….xii
表目錄……………………………………………………………...xiv
符號說明…………………………………………………………..xvii

第一章 緒論………………………………………………………...1
1.1 研究緣起……………………………………………….1
1.2 研究目的……………………………………………….2
1.3 研究內容與方法……………………………………….3
第二章 文獻回顧與基本理論………………………………………6
2.1 熱裂解原理與處理現況……………………………….6
2.2 造紙廠廢水污泥與廢棄物熱裂解之相關研究……….7
2.3動力學基本理論分析…………….……………………12
第三章 實驗設備與分析方法……………………………………..18
3.1 實驗設備與方法……………………………………...18
3.1.1 熱重量分析系統(TGA)與熱裂解爐系統……….18
3.1.2 實驗操作條件……………………………………25
3.1.3 實驗步驟…………………………………………28
3.1.4 採樣方法…………………………………………30
3.2分析方法…….…………………………………………32
3.2.1 三成分分析………………………………………32
3.2.2 元素分析…………………………………………34
3.2.3 金屬及無機元素分析……………………………35
3.2.4 熱值分析…………………………………………37
3.2.5 總氣體產物成分分析……………………………39
3.2.6 水氣含量分析……………………………………42
3.2.7 液體產物分析……………………………………44
3.2.8 液體產物燃燒熱分析……………………………47
3.2.9 固體殘餘物分析…………………………………47
第四章 結果與討論………………………………………………..49
4.1 樣品性質分析………………………………………...49
4.1.1 三成分分析………………………………………49
4.1.2 元素分析…………………………………………49
4.1.3 金屬及無機元素分析……………………………50
4.1.4 熱值分析…………………………………………51
4.2 反應動力學分析……………………………………...53
4.2.1 造紙廠廢水污泥反應動力模式建立……………53
4.2.2 造紙廠混合廢棄物(含污泥與不含污泥)熱裂解反
應模擬……………………………………………59
4.3 造紙廠廢水污泥與廢棄物裂解後固、液與氣體之百分
比組成………………………………………………..63
4.4 總氣體產物分析…….………………………………..64
4.4.1 氣體成分分析……………………………………64
4.4.2 水氣含量測定……………………………………65
4.4.3 氣體熱值分析……………………………………66
4.5 液體產物分析…...……………………………………69
4.5.1 成分分析………………………………….....…...69
4.5.2 熱值分析…………………………………………70
4.6 固體殘餘物分析...……………………………………77
4.6.1 殘餘物元素分析…………………………………77
4.6.2 殘餘物金屬元素分析……………………………77
4.6.3 殘餘物固定碳與熱值分析………………………84
4.7 質量平衡分析…...…………………………….……...86
第五章 結論與建議………………………………………………..87
5.1 結論…………………………………………………...87
5.2 建議…………………………………………………...89
參考文獻……………………………………………………………90
附錄A 氣體標準品檢量線、滯留時間及樣品熱裂解後氣體產物之
GC圖譜….………………………...………………………93
附錄B 化合物之燃燒熱………………………………………….103
附錄C污泥與混合廢棄物(含污泥與不含污泥)熱裂解之液體產 物GC/MS分析圖譜….………………………………….104
1.工業減廢聯合輔導小組,工業減廢技術手冊2-造紙工業,經濟部,環保署(1993)。
2.台灣造紙工業同業工會,“台灣造紙五十年”編輯(1997)。
3.林正芳與洪文宗,“都市污水廠污泥熱解之資源化研究”,第十
一屆廢棄物處理技術研討會論文集 (1996)。
4.章裕民,“焚化技術處理”,京文圖書有限公司(2000)。
5.張一岑,“有害廢棄物焚化技術”,聯經出版社(1991)。
6.孫逸民,陳玉舜,趙敏勳,謝明學,劉興鑑,“儀器分析” (2000)。
7.蔡博文,“造紙廠費棄物熱裂解之研究”,大葉大學環境工程學系研究所碩士論文(2007)。
8.www.epa.gov.tw
9.www.niea.gov.tw
10.www.nchu.edu.tw/~rict/
11.Ashrae Handbook Fundamentals (AHF), I-P ed. American Society of Heating Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (1993).
12.Buekens, A. G. and Huang, H., “Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes,” Resources, Conservation and Recycling, Vol.23, PP. 163-181 (1998).
13.Caballero, J. A., Font, R., Marcilla, A., and Conesa, J. A., “Characterization of sewage sludge by primary and secondary pyrolysis,” Journal of Analytical and Applied Pyrolysis, Vol.40-41, PP.433-450 (1997).
14.Chu, P. C., Lee, J. D., and Chang, Y. C.,“Thermal pyrollysis characteristics of polymer flocculated waste activated sludge,” Water Research, Vol.36, PP.49-56(2001).
15.Dominguez, A., Maenendez, J. A. and Pis, J. J., “Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature,” Journal of Analytical and Applied Pyrolysis, Vol.77, PP.127-32 (2006).
16.Faravelli, T., Bozzano, G., Scassa, C., Perego, M., Fabini, S., Ranzi, E., and Dent M., “Gas product distribution from polyethylene pyrolysis,” Journal of Analytical and Applied Pyrolysis, Vol,52, PP.87-103 (1999).
17.Friedman, H. L., “Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic,” Journal of Analytical and Applied Pyrolysis, Vol,6, PP.183-195(1965).
18.Font, R., Fullana, A. and Conesa, J., “Kinetic models for the pyrolysis and combustion of two types of sewage sludge,” Journal of Analytical and Applied Pyrolysis, Vol.74, PP.429-438 (2005).
19.Inguanzo, M., Dominguze, A., Menendez, J. A., Blanco, C. G. and Pis, J. J., “On the pyrolysis of sewage sludge the influence of pyrolysis conditions on solid, liquid and gas fractions,” Journal of Analytical and Applied Pyrolysis, Vol.63, PP.209-222 (2002).
20.Kaminsky, W. and Kummer, A. B., “Fluidized bed pyrolysis of digested sewage sludge, ” Journal of Analytical and Applied Pyrolysis, Vol.16, PP.27-35 (1989).
21.Karayildirim, T., Yanik, J. A., Yuksel, M. and Bockhom, H., “Characterisation of products from pyrolysis of sewage sludge,” Fuel, Vol.85, PP.1498-1508 (2006).
22.Lazaro, M. J., Moliner, R., Suelves, I., Domeno, C. and Nerin, C., “Co-pyrolysis of a mineral waste oil/coal slurry in a continuou-mode fluidized bed reacyor,” Journal of Analytical and Applied Pyrolysis, Vol.65, PP.239-252 (2002).
23.Lutz, H., Romeiro, G. A., Damasceno, R. N., Kutubuddin, M. and Bayer, E., “Low temperature conversion of some Brazilian municipal and industrial sludges,” Bioresource Technology, Vol.74 PP.103-107 (2000).
24.Pis, J. J., Inguanzo, M. and Menendez, J. A., “Microwave-induced pyrolysis of sewage sludge,” Water Research, Vol.36, PP.3261-3264 (2002).
25.Raafat, G. S. and Janusz, A. K., “Investigations of high-temperature oxidation of slidge fibers,” Fuel, Vol.68, PP.121-138 (2000).
26.Schmidt, H. and Kaminsky, W.,“Pyrolysis of oil sludge in a fluidized bed reactor,” Chemosphere, Vol.45, PP.285-290(2001).
27.Shen, L. and Zhang, D. K., “Low-temperature pyrolysis of sewage sludge and putrescible garbage for fuel oil production” Fuel, Vol.84, PP.809-815 (2005).
28.Urban, D. R. and Antal, M. J. Jr., “Study of the kinetics of sewage sludge pyrolysis using DSC and TGA,” Fuel, Vol.61, PP.799-806 (1982).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top