跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 16:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳信宏
研究生(外文):chen,Sin-Hong
論文名稱:改良型二氧化鈦光觸媒複合材料去除水溶液之染料之研究
論文名稱(外文):Photocatalytic Destruction of Dye in Aqueous Solution by TiO2-Based Composite Materials
指導教授:柯雅雯柯雅雯引用關係
指導教授(外文):Ko,Ya-Wen
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:80
中文關鍵詞:光催化反應光觸媒二氧化鈦染料擬一階反應速率方程式
外文關鍵詞:Photocatalytic reactionPhotocatalystsTiO2DyeRate equation of pseudo-first-order reaction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究以光催化合成法製備不同的二氧化鈦光觸媒複合材料,包括 TiO2/Al2O3、TiO2/GAC、Fe/ TiO2/Al2O3、Ba/TiO2/Al2O3、Sr/ TiO2/Al2O3,並分析其物化特性與表面型態。本研究並以自行製備的光觸媒複合材料,在紫外光照射下,對不同染料(AR27, RR141)溶液進行分解反應;並探討其最適操作條件,包括染料溶液pH值、TiO2劑量、染料初始濃度等因子。
本研究使用ICP-AES、BET、SEM/EDX與XRD等儀器鑑定光觸媒之基本特性。實驗結果顯示,BET測量之比表面積大約在103~105 m2/g。若觀察染料濃度的降解情形,與以擬一階反應速率方程式來描述實驗結果,可發現製備的金屬光觸媒複合材料,在光催化分解染料廢水的實驗中對染料的分解效能較佳;且其最佳pH值為3;最佳光觸媒劑量為0.05g。實驗證明以光催化合成法可以有效將金屬沉積於TiO2表面,製備出更有效之光觸媒複合材料。
The objectives of this work are to prepare various TiO2-based composite materials using the photodeposition method, and to decompose different dyestuffs in aqueous solutions under UV irradiation. Several kinds of photocatalysts were synthesized, including TiO2/Al2O3, TiO2/GAC, Fe/TiO2/Al2O3, Ba/TiO2/Al2O3, and Sr/TiO2/Al2O3. Their physico-chemical characteristics were also analyzed by ICP-AES, BET, SEM/EDX, and XRD. Additionally, the optimum experimental conditions (including pH value, TiO2 loading, and initial dye concentration) were studied.
The experimental results showed that the BET specific surface areas for the various photocatalysts are about 103~105 m2/g. As for the decay of dye concentration,rate equation of the pseudo-first-order reaction can be used to fit the data. It also revealed that the photocatalysts doped with metals (that is, Fe/ TiO2/Al2O3, Ba/TiO2/Al2O3,andSr/TiO2/Al2O3) had greater reaction rates and could remove dyestuffs more effectively. In addition, For both dye solutions (AR27 and RR141), the optimum pH value and photocatalyst loading were found to be 3 and 0.05g, respectively.
封面內頁
簽名頁
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目錄 ...vii
圖目錄 x
表目錄 ...xii

第一章
前言………….……………………………………………………01
1.1 研究緣起……………………………………………….01
1.2 研究目的……………………………………………….02
1.3 研究內容……………………………………………….02
第二章 文獻回顧……………………………………………….…….……03
2.1光催化反應之原理與應用.….……….………….…….03
2.1.1基本原理…………..….. .....…. .….…..……….…03
2.1.2 Langmuir-Hinshelwood(LH)模式介紹.….. 04
2.1.3光催化反應之應用………….….…….….…….....06
2.1.4限制條件……….….….….…….….……..……….10
2.2影響紫外線/光觸媒處理成效之因素..……..……...12
2.2.1光觸媒添加量…….……...…….……….……......12
2.2.2溶液pH值………….………….….……………..13
2.2.3反應物初始濃度…..……. .………...………...…..15
2.3二氧化鈦觸媒的製備與改質.………………..….…....16
2.4改良之二氧化鈦複合材料的應用……………..…….20
第三章
實驗材料與研究方法…………………………..….……….….....22
3.1 實驗設備與材料…………………………………….....22
3.1.1實驗裝置與儀器….………..…..…….…..……....22
3.1.2實驗藥品與耗材…….……………………...…....24
3.2 研究流程………………………………………….……26
3.3二氧化鈦複合材料的製備…...….…………….………27
3.4光觸媒的特性鑑定與分析….………………………....29
3.4.1觸媒的元素成份分析-ICP-AES分析………....29
3.4.2比表面積的分析-BET分析………………....…29
3.4.3表面形貌及表面元素的分析-SEM/EDX分析30
3.4.4晶相分析-XRD分析.……….……….……......30
3.5實驗設計與步驟.…..…..….….….….….….….….…....31
3.6分析方法..….....…...….….…..…..….….…..…...…......32
3.6.1光強度測定分析.………. …………….…..……...32
3.6.2染料濃度的分析.……….………………………...33
3.6.3 TOC分析.……….…………………….……...…...34

第四章
結果與討論……………………………………………..…………36
4.1二氧化鈦複合材料之特性分析…………….………...36
4.1.1奈米光觸媒成份組成元素分析-ICP-AES定量分
析…………………………………….………………36
4.1.2奈米光觸媒外表形貌鑑定-SEM/EDX鑑定 結………………………………….…………………37
4.1.3 奈米光觸媒比表面積分析-BET分析
果………………………………….…………………42
4.2 pH值對染料的去除效果……….………..…..…….…...43
4.3 光觸媒劑量對染料的去除效果………….…………...47
4.4 染料初始濃度對去除效果的影響……...….….…..….52
4.5各種光觸媒複合材料對AR47與RR141染料之比較與
去除效率..…...…...…...…...…...…..…...….….…..…...56
第五章
結論與建議…………………………….…………………..……..60
5.1結論………………………………………….…...…….60
5.2建議………………………………………….……...….61
參考文獻……………………………………….………………....62

圖目錄

圖3.1光催化反應的實驗裝置圖…………………….……………23
圖3.2 Acid Red 27分子結構式………………………………...…..25
圖3.3 Reactive Red 141分子結構式…………………………..…..26
圖3.4研究流程圖……….………………………….……….….….27
圖3.5光強度與可變電壓之關係….…………………….……..….33
圖3.6 AR27標準溶液之曲線.……….………………………….…..34
圖3.7 TC總碳標準溶液之曲線. ………………..………….……....35
圖4.1 以(A)Degussa P-25、(B)TiO2/Al2O3、(C)TiO2 /GAC、
(D)Fe/TiO2/Al2O3、(E)Sr/ TiO2/Al2O3、(F)Ba/ TiO2/Al2O3
光觸媒之SEM照片圖(放大倍率為3,000倍)…..….38
圖4.2 (A)Degussa P-25、(B)TiO2/Al2O3、(C)TiO2 /GAC金屬改質
型觸媒之EDX能譜圖..….….….……….….….….….…. 40
圖4.2 (D)Fe/ TiO2/Al2O3、(E)Sr/ TiO2/Al2O3、(F)Ba/ TiO2/Al2O3
金屬改質型觸媒之EDX能譜圖(續)……...….….…..…....41
圖4.3 pH值對Degussa P-25分解AR27染料的影響(初始濃度
50ppm、TiO2=0.05g)..…………..….….….….………...…..…44
圖4.4 pH值對Degussa P-25分解RR141染料的影響(初始濃度
100ppm、TiO2=0.05g)….…………………………….……...45
圖4.5 為TiO2/GAC對AR27染料之去除率與劑量關係圖(取樣
時間90分鐘,初始濃度100ppm,pH3) ……………..…48
圖4.6 為TiO2/GAC對RR141染料之去除率與劑量關係圖(取樣
時間90分鐘,初始濃度100ppm,pH3) ……………..…49
圖4.7 Ba/ TiO2/Al2O3在不同染料(AR27)初始濃度下的反應
(pH=3,TiO2=0.05g) …………………………...……….…53
圖4.8 Ba/ TiO2/Al2O3在不同染料(RR141)初始濃度下的反應
(pH=3,TiO2=0.05g) ..……………...……...……........……53
圖4.9 為AR27染料之1/k’對Co作圖.…………………..…..…54
圖4.10為RR141染料之1/k’對Co作圖.…………………..…..…55
圖4.11不同光觸媒對AR27之去除率的比較(pH=3,取樣時間
=30min,TiO2 =0.05g,初始濃度100ppm) ………............ 57
圖4.12不同光觸媒對RR141之去除率的比較(pH=3,取樣時間
=30min,TiO2 =0.05g,初始濃度100ppm) ………….....…57

表目錄

表2.1 TiO2光催化在廢水處理中的應用實例(沈偉韌等人,
1998)………………………...……………………….…..…….07
表2.1 TiO2光催化在廢水處理中的應用實例(沈偉韌等人,
1998)(續)………………………………………..….……….08
表2.2近年以TiO2光觸媒去除水中之合成有機物(SOC)的研究彙
整….…….…….…….…….…….…….…….……..….……..08
表2.3光催化還原反應之文獻整理……….….…………………..09
表2.3光催化還原反應之文獻整理(續) .……….…….………..10
表2.4影響紫外線/光觸媒處理成效的因子….……..……..…...12
表2.5以吸附劑結合光觸媒之文獻整理…………………….……21
表3.1本研究的試驗設計……………………………………….…32
表4.1以ICP-AES分析光觸媒複合材料的元素濃度結果........…37
表4.2奈米光觸媒的比表面積分析結果........................................42
表4.3 以不同pH值分解AR27染料的反應速率常數k’ ..….….46
表4.4 以不同pH值分解RR141染料的反應速率常數k’..……..46
表4.5以TiO2/GAC觀察降解與吸附之結果..……..……....……49
表4.6 不同光觸媒複合材料在不同劑量時的去除率...……...…..50
表4.7以不同光觸媒劑量分解AR27染料的反應速率常數k’ ...51
表4.8以不同光觸媒劑量分解RR141染料的反應速率常數k’....51
表4.9 以不同初始染料濃度分解AR27染料的反應速率常數k’54
表4.10 以不同初始染料濃度分解RR141染料的反應速率常數
k’………………………………………………………..…….55
表4.11比較不同光觸媒材料對UV254的降情.……………..……58
參考文獻

1.沈偉韌,趙文寬,賀飛等,「TiO2光催化反應及其在廢水處理中的應用」,武漢大學化學系,民國九十七年二月。
2.陳重男、杜玫芬、盧明俊,「安丹在二氧化鈦懸浮溶液中之催化光分解反應」,第二十屆廢水處理技術研討會論文集,第6-77~6-83頁,台北,中華民國八十四年十一月。
3.何淑珠,「以紫外線/二氧化鈦光還原程序回收二氧化碳反應行為之研究」,第廿二屆廢水處理技術研究研討會,中華民國九十六年。
4.申永順,「以高級氧化程序處理揮發性有機污染物反應行為及光反應器設計之研究」,國立台灣科技大學化學工程技術研究所,博士論文,中華民國八十七年五月十六日。
5.陳姿瑜,「金屬改質奈米二氧化鈦觸媒之研究與應用」,國立清華大學 原子科學系,碩士論文,中華民國九十五年六月
6.張雅婷,「輻射敏感型光觸媒複合材料的研製與性能探討」,國立清華大學 原子科學系,碩士論文,中華民國九十五年六月。
7.Akbal A, F. and Onar, A. N., Environ Monit Assess, V.83, 295-302, 2003.
8.Alexander O., Jefferson D. A., Tikhov M.and Richard M. L ; “Enhancement of MTBE photocatalytic degradation by modification of TiO2 with gold nanoparticles”, Catalysis Communications, V. 8, 821–824, 2007.
9.Brezová, V., Blazková, A., Karpinský, L., Grosková, J., Havlínová, B., Jorík, V. and Ceppan, M., “Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibres”, Journal of Photochemistry and Photobiology A: Chemistry, V.109, 177-183, 1997.
10.Bhatkhande, D. S., Kamble, S. P., Sawant, S. B. and Pangarkar, V. G., “ Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light ”,Chemical Engineering Journal, V.102, 283-290, 2004.
11.Chu W., Choy W.K., So T.Y., “ The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline ”, Journal of Hazardous Materials V.141, 86–91, 2007.
12.D’Oliveira, J.C., Ghassan, A. S. and Pichat, P., Environmental Science and Technology, V.24, 990-996, 1990.
13.Dey G. R., Belapurkar A. D. and Kishore K, “Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water”, Journal of Photochemistry and photobiology A: Chemistry, V.163, 503-508, 2004.
14.Fujiwara H., Hosokawa .H., Murakoshi. K., Wada Y.,Yanagida S.,Okada T.and Kobayashi H., “Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites”, J. Phys. Chem. B, V. 101,8270-8278. , 1997.
15.Ferry, J. L. and Glaze, W. H. , “Photocatalystic reduction of nitro organics over illuminated titanium dioxide” : Role of the TiO2 Surface”, Langmuir , V.14, 3551-3555 , 1998.
16.Goren, Z. and Willner, I. , “Selective photoreduction of CO2/HCO3- to formate by aqueous suspensions and colloids of pd-TiO2”, J. Phys. Chem., V.94, 3784-3790 , 1990.
17.Guan G., Kida T.and Yoshida A., “ Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst”, Applied Catalysis B: Environmental, V.41, 387-396, 2003.
18.Guan G. ., Kida T., Harada T., Isayama M.and Yoshida A., “ Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight”, Applied Catalysis A: General, V.249, 11-18, 2003.
19.Hori H., Ishitani O., Koike K., Johnson F. P. A.and Ibusuki T., “ Efficient carbon dioxide photoreduction by novel metal complexes and Its reaction mechanisms ”, Energy Convers. Mgmt, V. 36, 621-624, 1995.
20.Hirano, K., Inoue. K. and Yatsu, T., “Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder”, J. Photochem. Photobiol. A: Chem., V. 64 , 255-258, 1992.
21.Hori, H., Johnson P.A., Koike F, K., Ishitani, O. and Ibusuki, T., “ Efficient photocatalytic CO2 reduction using [Re(bpy)(CO2){P(OEt)3]+” , J. Photochem. Photobiol. A: Chem., V. 96, 171-174, 1996.
22.Hirose T., Y. Maeno.and Y. Himeda., “ Photocatalytic carbon dioxide photoreduction by Co(bpy)32+ sensitized by Ru(bpy)32+ fixed to cation exchange polymer” , Journal of Molecular Catalysis A: Chemical , V. 193, 27-32, 2003。
23.Irvine, J. T. S., Egging, B. R. and Grimshaw, J., “ Solar energy fixation of carbon dioxide via cadmium sulphide and other semiconductor photocatalysis”, Solar Energy, V.45, 1, 27-33, 1990.
24.Inoue H., Moriwaki H.., Maeda K.and Yoneyama H., “ Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals”, Journal of Photochemistry and photobiology A: Chemistry, V.86, 191-196, 1995.
25.Itoh T., Asada H., Tobioka K., Kodera Y., Matsushima A., Hiroto M., Nishimura H., Kamachi T., Okura I.and Inada Y., “ Hydrogen gas evolution and carbon dioxide fixation with vsible light by chlorophyllin coupled with polyethylene glycol”, Bioconjugate Chem., V.11,8-13, 2000.
26.I-Hsiang Tseng., Wan-C C.and Jeffrey C.S. Wu., “ Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts”, Applied Catalysis B: Environmental V.37,37–48, 2002.
27.I-Hsiang Tseng, Jeffrey C.S.Wu., “Chemical states of metal-loaded titania in the photoreduction of CO2”, Catalysis Today V.97,113–119, 2004.
28.Johne P.and Kisch H., “ Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders”, Journal of Photochemistry and photobiology A: Chemistry, V.111, 223-228, 1997.
29.Kuwabata S., Yamauchi H.and Yoneyam H a., “ Urea photosynthesis from inorganic carbon and nitrogen compounds using TiO2 as photocatalyst”, Langmuir, V. 14, 1899-1904, 1998.
30.Kenji A., Kiyhisa O. and Takayuki M., “ Photocatalytic reduction of carbon dioxide hydrocarbon using copper-loaded titanium dioxide ”, Solar Energy, V.53, 2, 187-190, 1994.
31.Kaneco S., Kurimoto H., Ohta K., Mizuno T.and Saji A., “ Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium ”, J. photochem. Photobiol. A: Chem., V.109, 59-63, 1997.
32.Kaneco, S., Shimizu, Y., Ohta, K. and Mizuno, T., “ Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger ”, J. Photochem. Photobiol. A: Chem , V.115, 223-226, 1998.
33.Konstantinou, I. K., and Albanis, T. A., “TiO2-assisted photocatalytic degeadation of azo dyes in agueous solution kinetic and mechanistic investigations A review”, Applied catalysis B: Environmental, V.49, 1-14,2004.
34.Lin, B.-J., Torimoto, T. and Yoneyama, H., “ Photocatalytic reduction of cO2 using surface-modified CdS photocatalysts in organic solvens ”, J. Photochem. Photobiol. A: Chem , V. 113, 93-97 , 1998.
35.Mascolo G. A,, Comparelli B R., Curri B M.L., Lovecchio A,A G..and Lopez A, A. , “Photocatalytic degradation of methyl red by TiO2: Comparison of theefficiency of immobilized nanoparticles versusconventional suspended catalyst”, Agostiano Journal of Hazardous Materials V. 142, 130–137, 2007.
36.Madian, R. and Willner, I., “ Photoreduction of CO2 to CH4 in aqueous solutions using visible light ”, J. Am. Chem. Soc., V.108, 8100-8101 , 1986.
37.Magdy, W. R. and Mounir, A. M., “ The photocatalysed reduction of aqueous sodium carbonate to carbon using platinised titania ”, J. Chem. Soc., Chem, Commun., 1418-1420, ,1987.
38.Ohta, K., Ueda, Y., NaKaguchi, S. and Mizuno, T., “ Photochemical reduction of CO2 using Cu-load silicate rock power suspended in water”, Can. J. Chem., V.76, 228-233, 1998.
39.Premkumar J. R.and Ramaraj R., “ Photoreduction of carbon dioxide by metal phthalocyanine adsorbed Nafion membrane”, Chem. Commun., 343-344, 1997.
40.Premkumar J.and Ramaraj R., “ Photocatalytic reduction of carbon dioxide to formic acid at porphyrin and phthalocyanine adsorbed Nafion membranes”,, Journal of Photochemistry and photobiology A: Chemistry, V.110, 53-58, 1997.
41.Peiró, A. M., Ayllón, J. A., Peral, J. and Doménech, X.,“ TIO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds”, Applied Catalysis B: Environmental, V.30, 359-373, 2001.
42.Rao, N. N., Dube S., Manjubala and Natarajan, P., “ Photocatalytic reduction of nitrogen over (Fe, Ru or Os)/TiO2 catalysts ”, Appl. Catal. B:Envir., V.5, 33-42 , 1994.
43.Schotanus P., Eijk Van., Hollander R.and Pijpelink W., “ Photoelectron production in BaF2-TAME detectors”, Nucl. Instr. And method. in Phys. Research, V.259, 586-588, 1987.
44.Subrahmanyam M., Kaneco S.and Alonso-Vante N., “ A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity”, Applied Catalysis B: Environmental, V.23, 169-174, 1999.
45.Sobczyński, A., Duczmal, Ł. and Zmudziński, W., “ Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism”, Journal of Molecular Catalysis A: Chemical, V.213, 225-230, 2004.
46.Singh H.K., Saquib M., Haque M.M.and Muneer M. , “Heterogeneous photocatalysed degradation of 4-chlorophenoxyacetic acid in aqueous suspensions”, Journal of Hazardous Materials V. 142, 374–380, 2007.
47.Vasileva, E., Hadjiivanov, K. and Mandjukov, P., “ Adsorption of Cr(VI) anions on pure and peroxide-modified TiO2(Anatase) ”, Collo. and Surf. A: Physicochem and Eng. aspects, V.90, 9-15, 1994.
48.Wang, K. H., Hsieh, Y. H. and Chen, L. J., “ The heterogeneous photocatalytic degradation, intermediates and mineralization for the aqueous solution of cresols and nitrophenols ”, Journal of Hazardous Materials, V.59, 251-260, 1998.
49.Wang, K. H., Hsieh, Y. H., Chou, M. Y. and Chang, C. Y., “ Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution ”,Applied Catalysis B: Environmental, V.21, 1-8, 1999.
50.Yahaya A.H., Gondal M.A.and Hameed A., “ Selective laser enhanced photocatalytic conversion of CO2 into methanol”, chemical physics letters, V.400, 206-212, 2004.
51.Young Ku., Wan-Hui Lee.and Wen-Yu Wang., “ hotocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process”, Journal of Molecular Catalysis A: Chemical V.212, 191–196, 2004.
52.Yazi Liu., Shaogui Yang., Jun Hong.and Cheng Sun., “ Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon”, Journal of Hazardous Materials V.142 , 208–215, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top