跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭敬聖
研究生(外文):kuo Ching Sheng
論文名稱:結合化學置換法及Fenton-like程序處理含重金屬及有機物混合溶液之反應行為研究
論文名稱(外文):Treatment of the Mixture of Heavy Metal and Organic Wastewaters by Cementation and Fenton-like Processes
指導教授:申永順申永順引用關係
指導教授(外文):Shen Yung Shuen
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:148
中文關鍵詞:Fenton-like程序染料廢水過氧化氫進流速度污染性生成物可行性BDST模式
外文關鍵詞:Fenton-likecementrationBDST model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以鐵為犧牲金屬與管柱式結合化學置換法及Fenton-like程序處理個別及混和之重金屬、染料溶液之反應行為,針對不同的反應條件(鐵粉劑量、過氧化氫之劑量、進流速度、pH值等效應)對有機物(酸性染料 Orange G)及重金屬(Cu2+)進行探討,以嘗試了解各因子在各氧化及還原系統中所扮演的角色及其對反應之影響,據以求得氧化及還原反應之最佳條件,以了解利用此結合程序之可行性與處理效率,作為未來應用研究之參考。
實驗結果顯示,以化學置換法及Fenton-like程序處理含染料Orange G溶液時,污染物去除率隨鐵粉添加劑量之增加、H2O2劑量之提高,以及溶液pH值超過3而降低,其中鐵粉添加劑量、H2O2劑量、進流速度與溶液pH值為主要影響污染物氧化還原速率之反應因子。對鐵粉添加劑量而言鐵粉最佳劑量為0.5克,而Fe2+與H2O2劑量分別為促進Fenton反應之因素,當鐵粉劑量0.5克時之最佳H2O2劑量為34mg/L,可對水中有機物(染料)有效的去除;在上述條件下改變進流速度後發現流速6ml/min時,管柱內之孔隙度並不因反應過快而附著過多生成物,進而造成緻密性增加流速降低之現象。
由SEM 分析結果顯示,不同反應溶液系統,會造成反應後犧牲金屬表面上有不同之沈積型態及孔隙大小,推測此係為影響污染性離子化學置換速率的主因之一。另實驗發現染料生成物與還原銅會吸附於犧牲金屬表面,此可減緩氫離子對金屬表面的侵蝕作用,減少犧牲金屬的溶出。
以銅-鐵系統進行管柱實驗結果顯示,固定床式化學置換程序之使用效率隨著空床接觸時間(EBCT)增加而增加,流體化床化學置換程序之使用效率隨著進流速度增加而減少。銅離子之穿透曲線經由BDST吸附模式模擬的結果顯示化學置換反應之機制以反應控制為主。
在Fenton-like程序中,結合系統化學置換法及Fenton程序經由BDST模式可合理模擬在各操作條件下水中重金屬之有效去除與有機物反應效率,並可作為以後之研究之先例。

關鍵詞:Fenton-like程序、染料廢水、BDST模式
The purpose of this study is to explore the treatment of individual or/and mixture of Cu2+ and dye (Orange G) wastewaters by cementation and Fenton-like processes within a column test with Fe powder as a sacrificial metal. The removal behaviors of pollutants are investigate at various operating conditions (solution pH values, doses of Fe powder and H2O2, flow rates, and initial concentrations of pollutants) to evaluate the treatment efficiencies.
Experimental results showed that the decoloration rate of Orange G in aqueous solutions by cementation and Fenton-like processes increased with increasing doses of Fe powder and H2O2, with decreasing solution pH values and flow rate. The optimum doses of Fe powder and H2O2, are 0.5 gram and 34mg/L, respectively, while the removal of dye reached above 99%. Metal oxides was found to be deposited on Fe0 powder surface to decrease the pore space, then to reduce the flow rate, and increased the retention time.
Based on the analytical results of SEM, it was found that the deposit types and pore sizes of Fe0 powder which were determined to be the main factors to treatment efficiency of pollutants were different to various reaction solution systems. The acidic erosion of Fe0 powder by H+ was found to be retarded by the deposition of dye, organic intermediates, and Cu2+ onto Fe0 powder surface, then decreased the release rate of Fe2+ in the reaction solutions.
In the Cu2+/Fe0 column test, the utilization of Fe0 within the fluidized-bed system was found to be larger than that in the fix-bed system. The breakthrough curve of Cu2+ by cementation and Fenton-like processes can be well described by the BDST adsorption model indicating that the rate-determine-step of this system could be Fe0 surface reactions.

Keywords: Cementation, Fenton-like, dye, heavy metals, BDST model
封面
簽名頁
授權書...................................................................................................iii
中文摘要...............................................................................................iv
英文摘要...............................................................................................vi
誌謝......................................................................................................vii
目錄…………………………………………………………viii
圖目錄..........................................xii
表目錄.........................................xviii
第一章 前言........................................1
1.1 研究動機...................................1
1.2 研究目的及內容..............................3
第二章 理論與文獻回顧................................4
2.1 染整廢水特性簡介............................4
2.1.1 染料之化學結構及發色原理.....................8
2.1.2 染整廢水之特性..............................9
2.1.3 一般染整廢水處理技術........................11
2.2 化學置換之處理程序..........................12
2.2.1 零價鐵-還原之反應原理.......................13
2.2.2 化學置換反應之原理..........................13
2.2.3 影響鐵還原能力之因素........................15
2.3 Fenton程序................................17
2.3.1 Fenton程序之理論...........................17
2.3.2 Fenton程序之反應機制.......................19
2.3.3 影響Fenton程序之因素.......................20
2.3.3.1 pH值的影響................................20
2.3.3.2鐵離子劑量的影響............................22
2.3.3.3 H2O2劑量的影響............................23
2.4 結合化學置換及Fenton-like法之處理程序.......24
2.4.1 混合程序的反應機制.........................24
2.4.2 混合程序之影響因素.........................25
2.4.2.1 pH值的影響................................25
2.4.2.2 鐵粉與H2O2添加量及比例之影響................26
2.4.2.3 反應溫度的影響.............................28
2.5管柱式動力反應模式.........................................33
2.5.1管柱系統之化學系統模式BDST模式....................34
第三章 研究目的....................................37
第四章 研究方法....................................39
4.1 實驗設備與儀器.............................39
4.2 實驗藥品..................................40
4.3 實驗裝置..................................41
4.4 實驗步驟..................................43
4.4.1 背景實驗..................................43
4.4.2 污染物之背景實驗設計.......................45
4.4.3 以化學置換法及Fenton-like程序處理模擬廢水溶液................47
4.5 分析測定方法..............................49
第五章 結果與討論..................................51
5.1 以化學置換法處理模擬廢水之反應行為...........51
5.2表面沈積現象之SEM分析...........................................52
5.3 結合化學置換法與Fenton-like程序處理模擬廢水之反應行為.........57
5.3.1 銅離子廢水...............................................57
5.3.1.1鐵粉添加劑量效應........................................57
5.3.1.2溶液pH值效應...........................................62
5.3.2 染料廢水.................................................66
5.3.2.1 鐵粉劑量效應.......................................66
5.3.2.2 pH效應............................................70
5.3.3 銅離子與染料混合廢水.......................................73
5.3.3.1 鐵粉劑量效應.......................................73
5.3.3.2 pH效應............................................78
5.3.3.3 進流流速效應.......................................82
5.3.3.4 與單成份系統之去除行為比較...........................86
5.3.4 管柱動力模式探討....................................90
5.3.4.1BDST模式之探討模擬...............................90
5.3.4.1.1 銅離子溶液....................................90
5.3.4.1.2 銅離子與染料溶液...............................92
5.4以Fenton-like程序處理廢水之反應行為................................95
5.4.1銅離子廢水.....................................................96
5.4.1.1 pH效應.................................................96
5.4.1.2 H2O2劑量效應............................................98
5.4.2染料廢水......................................................102
5.4.2.1鐵粉劑量效應.............................................102
5.4.2.2 pH效應.................................................105
5.4.2.3 H2O2劑量效應...........................................108
5.4.2.4 流速效應...............................................111
5.4.3銅離子與染料混合廢水............................................114
5.4.3.1鐵粉劑量效應.............................................114
5.4.3.2 pH效應.................................................119
5.4.3.3進流流速效應.............................................123
5.4.3.4 BDST模式之探討..........................................127
5.4.3.5與單成份系統、雙成份系統之去除行為比較......................132
5.5 不同反應系統下Fenton-like程序處理模擬廢水之反應行為......134
5.5.1固定床與流體化床系統之差異說明...................................134
5.5.2固定床與流體化床系統之反應特性比較................................135
5.5.2.1鐵粉劑量效應.............................................135
5.5.2.2 pH效應.................................................139
第六章 結論.........................................................144
6.1結論............................................................144
6.2建議............................................................144
參考文獻...........................................................146
1.吳明晃,” 以化學置換法程序處理水溶液中含鎘、汞離子之研究”, 台灣科技大學化學工程系 (2000)。
2.吳嘉偉,” 結合化學置換法及Fenton-like程序處理含重金屬及有機物混合溶液之反應行為研究”,碩士論文,大葉大學環工所(2004)。
3.高思懷、詹益臨,”Fenton法處理污整元廢水之研究”, 第十八屆廢水處理技術研究討論會論文集,851-861 (1993)。
4.張芳淑、高思懷、吳嘉麗,”pH值在Fenton系統中所扮演的角色探討”第二十屆廢水處理技術研討會論文集,61-67 (1995)。
5.陳韋舜,” Fenton-like反應中含氯乙烯類污染物與氫氧自由基反應係數之探討”,碩士論文、屏東科技大學環工系 (2003)。
6.Andreozzi, R., and Marotta, R., “Removal of Benzoic Acid in Aqueous Solution by Fe(III) Homogeneous Photocatalysis”, Water Research, Vol. 38, 1522-1236 (2004).
7.Benitze, F.J., and Acero, J.L., “The Role of Hydroxyl Radicals for The Decomposition of p-Hydroxy Phenylaceyic Acid in Aqueous Solutions”, Water Research, Vol. 35, 5, 1338-1343 (2001).
8.Bergendahl, J.A., and Thies, T.P., “Fenton’s Oxidation of MTBE with Zero-valent Iron”, Water Research, Vol. 38, 327-334 (2004).
9.Chamarro, E., and Marco, A., “Use of Fenton Reagent to Improve Organic Chemical Biodegradability”, Water Research, Vol. 35, 4, 1047-1051 (2001).
10.Hsuen, C.L., Huang, Y.H., Wang, C.C., and Chen, C.Y. , “Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system”, Chemosphere Vol. 58, 1409-1414(2005).
11.Hsueh, C.L., Huang, Y.H., Wang, C.C., and Chen, C.Y., “Photoassisted fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH”, Journal of Molecular Catalysis A: Chemical 245, 78–86 (2006).
12.Souza, D. R., Duarte, E.T.M.F., Souza, G. G., Velani, V. , Machado, A. E. d. H., Sattler, C., Oliveira, L.d., Miranda, J.A.d. , “Study of kinetic parameters related to the degradation of an industrial effluent using Fenton-like reactions”, Jounal of Photochemistry and Photobiology A: Chemistry Vol. 179, 269-275(2006).
13.Lin, H.K., and Luong, H.V., ”Column Leaching for Simulating Heap and In-situ Soil Remediation with Metallic Fenton Reaction”, Journal of Minerals & Materials Characterzation & Engineering , Vol.3, No1, pp33-39(2004).
14.Feng, J. , Hu, X. and Yue, P. L. , “Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst”, Water Research. Vol. 40, 641-646(2006).
15.Feng, J. , Hu, X. , Yue, P. L. and Zhu, H. Y. and Lu, G. Q. , “A novel laponite clay-based Fe nanocomposite and its photo-catalytic activity in photo-assisted degradation of Orange II ”, Chem. Eng. Sci. 58, 679-685(2003).
16.Laat, J. D. and Le T. G. , “Effect of chloride ions on iron(III)-catalyzed decomposition of hydrogen peroxide and on efficiency of the Fenton-like oxidation process”, App. Cat. B:Envir. 66, 137-146(2006).
17.Ntampegliotis, K. , Riga, A. , Karayannis, V., Bontozoglou, V. and Papapolymerou, G. , “Decolorization kinetics of Procion H-exl dyes from textile dyeing using Fenton-like reactions”, Jou. of Haz. Mat. 136, 75-84(2006).
18.Liao, C.H., Kang, S.F. and Hsu, Y.W., “Zero-valent Iron Reduction of Nitrate in the Presence of Ultraviolet Light, Orange Matter and Hydrogen Peroxide”, Water Research. Vol. 37, 4109-4118 (2003).
19.Lunar, L., Sicilia, D., Rubio, S., Perez-Bendito D. and Nickel U., “Degradation of Photogradation Developers by Fenton’s Reagent: Condition Optimization and Kinetic for Metol Oxidation”, Water Research Vol. 34, 6, 1791-1802 (2000).
20.Farre´,M.J., Dome´nech, Xa. and Peral, J., “Assessment of photo-Fenton and biological treatment coupling for Diuron and Linuron removal from water” , Water Research Vol. 40, 2533-2540(2006)
21.Oh, S.Y. and Chiu, P.C., “Fenton and Photo-Fenton Oxidation of Textile Effluents”, Water Research Vol. 367, 2703-2710 (2002).
22.P’erez, M. and Torrades, F., “Enhancing Fenton oxidation of TNT and RNT through Pretreatment with Zero-valent iron”, Water Research Vol. 37, 4275-4283 (2003).
23.Liou, R.M. , Chen, S.H. , Huang, M.Y. , Hsu, C.S. and Lai, J.Y. , “Fe(III)supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution”, Chemosphere Vol. 59, 117-125(2005).
24.Boussahel, R., Harik, D., Mammar, M. and Lamara-Mohamed, S. “Degradation of obsolete DDT by Fenton oxidation with zero-valent iron”, Desalination206, 369–372(2007).
25.Park, S. and Yoon, T. , “The effects of iron species and mineral particles on advanced oxidation processes for the removal of humic acids”, Desalination 208, 181–191 (2007) .
26.Kurt U., Avsar, Y. and Gonnullu, M.T. , “Treatability of water-based paint wastewater with Fenton process in different tractor types”, Chemosphere Vol. 64, 1536-1540(2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top