跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 13:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁氏梅麗
研究生(外文):Luong Thi Mai Ly
論文名稱:影響活性污泥對持久性有機物馴化的因素
論文名稱(外文):Factors Affecting Activated Sludge Acclimation to Xenobiotics
指導教授:張玉明張玉明引用關係
指導教授(外文):Chong Nyuk Min
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:95
中文關鍵詞:馴化24-D活性污泥持久性污染物
外文關鍵詞:acclimation24-dichlorophenoxyacetic acidactivated sludge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
2,4 dichlorophenoxyacetic (2,4-D) 是廣泛應用的除草劑。2,4-D 在環境中可能成為有機汙染物,此污染物具有持久性及毒性;2,4-D非自然的特徵(稱xenobiotic),自然微生物如活性污泥要經適應期間(稱為馴化)以後,才能將之分解。本研究以多重實驗探討各種因素,如何影響活性污泥對2,4-D的馴化時間的長度,及馴化之後的分解速率。實驗探討的因素包括2,4-D 的濃度、活性污泥濃度、污泥之營養狀況、自然基質及相似基質添增加等。實驗結果顯示:馴化時間長短與污泥濃度成反比、馴化時間與2,4-D濃度相關性小;污泥營養不良(飢餓)時,馴化時間延長;蔗糖與2,4-D同時分解,增長馴化時間、在2,4-D之前分解則稍為減少馴化時間;酚在2,4-D之前分解,減少污泥對2,4-D 馴化時間,且此優點因酚濃度而增加。
2,4-dichlorophenoxyacetic acid (2,4-D) is a widely applied herbicide introduced to the environment and becomes a pollutant. This organic pollutant is toxic and persistent, and called xenobiotic cause of its non – nature characteristic but can be degraded by activated sludge after an acclimation period.
Several experiments were conducted in this study to determine the effects of factors on 2,4-D acclimation period and also the degradation time. Factors considered here include the initial concentration of 2,4-D and activated sludge, starved activated sludge, a biogenic substrate and similar substrate added prior to 2,4-D.
The length of acclimation time is directly proportional to the increasing of initial activated sludge concentration and inversely proportional to the increasing of initial 2,4-D concentration. However it also depends on the combination of them in one. A combination of 100 mg/l of initial 2,4-D concentration and 20 mg/l of initial activated sludge was chosen as the most appropriate to conduct all experiments to explore the effects of starved sludge, of sucrose and phenol on lag period of 2,4-D degradation.
Lacking of nutrient for 5 to 10 days is an advantage for shorten length of acclimation period and increasing rate of degradation. The presence of sucrose and phenol in solution before adding 2,4-D also have significant effect on lag phase. Activated sludge added with 100 mg/l or 200 mg/l of sucrose 3 days prior to adding 2,4-D can sharply accumulated degradation capacity so that the acclimation phase under this condition is the shortest. With phenol, the reduction in lag time of activated sludge to 2,4-D was directly related to the concentration of phenol added. 100 mg/l phenol added and degraded before adding 2,4-D can reduce acclimation time from 72 hours to 14 hours.
授權書 0
ABSTRACT iv
中文摘要 v
ACKNOWLEDGEMENT vi
TABLE OF CONTENTS vii
TABLE OF FIGURES x
LIST OF TABLES xii
DESCRIPTION OF CODES xiii
Chapter I. INTRODUCTION 1
1.1 Motivation 1
1.2 Object and purposes 3
1.3 The task 3
Chapter II. LITERATURE REVIEW 5
2.1 Activated sludge 5
2.1.1 General principles of activated sludge process 5
2.1.2 Biokinetics of activated sludge 7
2.1.3 Biomass activated sludge 10
2.1.4 Xenobiotics degradability of activated sludge 12
2.2 2,4-Dichlorophenoxyacetic acid 13
2.2.1 Chemical characteristic 13
2.2.2 2,4-D metabolism pathway 14
2.2.3 Application of 2,4-D 17
2.2.4 Risk characterizations 18
2.2.5 Source of 2,4-D in the environment 20
2.2.6 Research about 2,4-D 21
2.3 Acclimation 23
2.4 Diauxic growth 26
2.4.1 What is diauxic growth 26
2.4.2 Diauxic growth overview 26
Chapter III. METHODS AND MATERIALS 33
3.1 Materials and apparatus 33
3.1.1 Chemical substance 33
3.1.2 Activated sludge 34
3.1.3 2,4-Dichlorophenoxyacetic acid 37
3.1.4 Apparatus 38
3.2 Experimental methods 39
3.2.1 Measurement of activated sludge concentration (as measure of SS) 41
3.2.2 Measurement of 2,4-D concentration remaining in each sample at regular interval 42
3.2.3 Estimate of 2,4-D degradation rate 44
3.3 Experimental design 45
3.3.1 Experiment 1: Absorption 2,4-D by activated sludge cells 45
3.2.3 Experiment 2: Effects of initial 2,4-D and sludge concentrations 46
3.2.4 Experiment 3: Effects of starved sludge on 2,4 -D biodegradability 48
3.2.5 Experiment 4: Effects of adding a biogenic substrate (Sucrose) 49
3.2.6 Experiment 5: Effects of adding a similar substrate (Phenol) 50
Chapter 4. RESULTS AND DISCUSSION 52
4.1 Experiment 1: Absorption 2,4-D by activated sludge cells 52
4.2 Experiment 2: Effects of starting 2,4-D and sludge concentrations 54
4.2.1 Effects of initial activated sludge concentrations 55
4.2.2 Effects of initial 2,4-D concentrations 60
4.3 Experiment 3: Effects of starved sludge on 2,4-D acclimation and biodegradability 67
4.4 Experiment 4: Effects of adding a biogenic substrate (Sucrose) 68
4.4.1 Effects of different sucrose concentration adding 69
4.4.2 Effects of different adding time points 74
4.4.3 Extra experiment: Effect of increase in biomass 80
4.5 Experiment 5: Effects of adding similar substrate (Phenol) 83
Chapter 5. CONCLUSIONS 86
5.1 Effects of initial 2,4-D and sludge concentrations (Experiment 2) 86
5.2 Effects of starved sludge on 2,4-D biodegradability (Experiment 3) 87
5.3 Effects of adding a biogenic substrate (Sucrose) (Experiment 4) 87
5.4 Effects of adding similar substrate (Phenol) (Experiment 5) 88
REFERENCE: 89


Fig. 2.1. Schematic Diagram of Activated-Sludge Process (*) 6
Fig. 2.2. Schematic diagram of a prefabricated package plant for the aeration treatment of small sewage flows (*) 7
Fig. 2.3. 2,4-D metabolism pathway 1 15
Fig. 2.4. 2,4-D metabolism pathway 2 16
Fig. 2.5. Two exponential growth phases on glucose and lactose (*) 27
Fig. 3.1. Chemicals used 34
Fig. 3.2. Activated sludge grown in aeration tank (continuous system) 35
Fig. 3.3. Minimal medium 36
Fig. 3.5. Hitachi U-2000 spectrophotometer device 39
Fig. 3.6. Diagram of experimental procedures 40
Fig. 3.7. Vacuum filtration and analysis balance 41
Fig. 3.8. Taking sample to measure 2,4-D concentration 42
Fig. 3.4. The 2,4-D calibration line 43
Fig. 4.1. 2,4-D absorption of raw sludge 52
Fig. 4.2. 2,4-D absorption of dried sludge 53
Fig. 4.3. 2,4-D absorption of boiled sludge 54
Fig. 4.4. Effects of AS conc. and 10 mg/l initial 2,4-D conc. (A10) 55
Fig. 4.5. Effects of AS conc. and 25 mg/l initial 2,4-D conc. (A25) 56
Fig. 4.6. Effects of AS conc. and 50 mg/l initial 2,4-D conc. (A50) 57
Fig. 4.7. Effects of AS conc. and 100 mg/l intial 2,4-D conc. (A100) 58
Fig. 4.8. Effects of AS conc. and 200 mg/l initial 2,4-D conc. (A200) 59
Fig. 4.9. Effects of 2,4-D conc. and 10 mg/l initial AS conc. (B10) 60
Fig. 4.10. Effects of 2,4-D conc. and 20 mg/l initial AS conc. (B20) 61
Fig. 4.11. Effects of 2,4-D conc. and 50 mg/l initial AS conc. (B50) 62
Fig. 4.12. Effects of 2,4-D conc. and 100 mg/l initial AS conc. (B100) 63
Fig. 4.13. Effects of 2,4-D conc. and 200 mg/l AS conc. (B200) 64
Fig. 4.14. Effects of starved sludge on 2,4-D acclimation and biodegradability 67
Fig. 4.15. Effects of adding sucrose at same time with adding 2,4-D 69
Fig. 4.16. Effects of adding sucrose 1 hour prior adding 2,4-D 70
Fig. 4.17. Effects of adding sucrose 2 days prior adding 2,4-D 71
Fig. 4.18. Effects of adding sucrose 3 days prior adding 2,4-D 72
Fig. 4.19. Effects of adding sucrose 5 days prior adding 2,4-D 73
Fig. 4.20. Effects of adding 20 mg/l of sucrose prior adding 2,4-D 74
Fig. 4.21. Effects of adding 50 mg/l of sucrose prior adding 2,4-D 75
Fig. 4.22. Effects of adding 100 mg/l of sucrose prior adding 2,4-D 76
Fig. 4.23. Effects of adding 200 mg/l of sucrose prior adding 2,4-D 77
Fig. 4.24. Effects of adding sucrose 3 days prior adding 2,4-D (Extra experiment) 80
Fig. 4.25. Effects of adding sucrose 5 days prior adding 2,4-D (Extra experiment) 81
Fig. 4.26. Effects of adding 50 mg/l of sucrose prior adding 2,4-D (Extra experiment) 82
Fig. 4.27. Effects of adding 200 mg/l of sucrose prior adding 2,4-D (Extra experiment) 82
Fig. 4.28. Effects of adding phenol prior adding 2,4-D 84
Table 3.1. List of Chemicals 33
Table 3.2. Minimal solution 36
Table 3.4. Apparatus 38
Table 3.3. 2,4-D calibration absorbance (ABS) 43
Table 3.5. Different combination of 2,4-D and dis-able sludge 46
(Experiment 1) 46
Table 3.6. Combinations of different initial concentrations of 2,4-D and AS 47
(Experiment 2) 47
Table 3.7. Combination of 2,4-D and starved sludge (Experiment 3) 49
Table 3.8. Adding sucrose to activated sludge (Experiment 4) 50
Table 3.9. Adding sucrose to activated sludge (Experiment 5) 51
Table 3.10. Effect of initial 2,4-D and activated sludge concentration on L, r, Td (Experiment 2) 65
Table 3.11. Effect of adding sucrose on L, r, Td (Experiment 3) 78
1. Alexander, B.H., Mandel, J.S., Baker, B.A., Burns, C.J., Bartels, M.J., Acquavella, J.F., and Gustin, C., 2007. Biomonitoring of 2,4-Dichlorophenoxyacetic Acid Exposure and Dose in Farm Families. Environmental health perspectives. 115 (3), 370-376.
2. Alexander, M., 1999. Biodegradation and Bioremediation, second edition. Academic Press. 17
3. Amrane, A., Adour, L., and Couriol, C., 2005a. An unstructured model for the diauxic growth of Penicillium camembertii on glucose and arginine. Biochemical Engineering Journal. 24, 125-133.
4. Amrane, A., Adour, L., and Couriol, C., 2005b. Diauxic growth of Penicillium camembertii on glucose and arginine. Enzyme and Microbial Technology. 36, 198-202.
5. Arbuckle, T.E., Burnett, R., Cole, D., Teschke, K., Dosemeci, M., Bencej, C., et al., 2002. Predictors of herbicide exposure in farm applicators. Int Arch Occup Environ Health. 75(6), 406-414.
6. Aksu, Z., and Kabasakal, E., 2005. Adsorption characteristics of 2,4-Dichlorophenoxyacetic acid from aqueous solution on powdered activated carbon. Journal of Environmental science and health. 40 (4), 545-570.
7. Buenrostro-Zagal, J.F., Ramirez-Oliva, A., Caffarel-Mendez, S., Schettino-Bermudez, and Poggi-Varaldo, H.M., 2000. Treatment of a 2,4-dichlorophenoxyacetic acid (2,4-D) contaminated wastewater in a membrane bioreactor. Water Sci. Technol. 42 (56), 185-192.
8. Buitron, G., Gonzalez, A., and Lopez-Marin, L.M., 1998. Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria, Wat. Sci. Tech. 37 (4-5), 371-378.
9. Centers for Disease Control and Prevention, 2005. Third National Report on Human Exposure to Environmental Chemicals. Atlanta, GA: Centers for Disease Control and Prevention. http://www.cdc.gov/exposurereport/3rd/pdf/thirdreport.pdf
10. Chen, G.W., Yu, H.Q., Xi, P.G., 2006. Influence of 2,4-dinitrophenol on the characteristics of activated sludge in batch reactors, Bioresource Technology. 98, 729-733.
11. Chin, H., Elefsiniotis, P., and Singhal, N., 2005. Biodegradation of 2,4- dichlorophenoxyacetic acid using an acidogenic anaerobic sequencing batch reactor. J. Environ. Eng. Sci. 4, 57-63.
12. Chong, M., Lin, Y., 2006. Measurement of the degradation capacity of activated sludge for a xenobiotic organic. Bioresource Technology. 98, 1124-1127.
13. Close, M.E., 1993. Assessment of pesticide contamination of ground-water in New Zealand 2. Results of groundwater sampling N.Z.J. Mar. Freshw. Res. 27, 267-273.
14. Daughton, C.G., Cook, A.M., Alexander, M., 1979. Phosphate and soil binding: factors limiting bacterial degradation of ionic phosphoruscontaining pesticide metabolites. Appl. Environ. Microbiol. 37 (3), 605–609.
15. Department of National Health and Welfare, 1993. Water treatment principles and applications, a manual for the production of drinking water. Canadian Water and Wastewater Association, Ottawa.
16. Egli, T., 1995. The ecological and physic ological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv. Microbiol. Ecol. 14, 305–386.
17. Encyclopædia Britannica Online, 2007. Package plant. Online Art. http://www.britannica.com/eb/art-19282.
18. Environment Canada/Agriculture Canada, 1987. Pesticide Registrant Survey 1986 report. Commercial Chemicals Branch, Environment Canada, Ottawa.
19. Ettala, M., Koskela, J., and Kiesila, A., 1992. Removal of chlorophenols in a municipal sewage treatment plant using activated sludge. Water Res. 26, 797-804.
20. Fielding, M., Barcelo, D., Helweg, A., Galassi, S., Torstensoon, L., Van, Z.P., Wolter, R., and Angelotti, G.,1992. Pesticides in ground and drinking water. E. Guyot SA, Brussels, Belgium.
21. Frank, R. and Logan, L., 1988. Pesticide and industrial chemical residues at the mouth of the Grand, Saugeen and Thames rivers, Ontario, Canada, 1981–85. Arch. Environ. Contam. Toxicol. 17, 741.
22. Frank, R., Campbell R.A., Sirons, G. J., 1985. Forestry workers involved in aerial application of 2,4-dichlorophenoxyacetic acid (2,4-D): exposure and urinary excretion. Arch Environ Contam Toxicol. 4, 427-435.
23. Gonzalez, J. and Hu, W., 1991. Effect of glutamate on the degradation of pentachlorophenol by Flavobacterium sp. Applied Microbiology and Biotechnology. 35, 100-104.
24. Gouw, M., Bozic, R., Koopman, B., and Svoronos, S.A., 2001. Research note effect of nitrate expose history on the oxygen/nitrate diauxic growth of Pseudomonas denitrificans. Wat. Res. 35 (11), 2794-2798.
25. Hamilton, W.A., Dawes, E.A., 1960. The nature of the diauxic effect with glucose and organic acids in Pseudomonas aeruginosa. Biochem. J. 76, 70.
26. Harder, W., Dijkhuizen, L., 1976. Mixed substrate utilization. In: Dean, A.C.R., Ellwood, D.C., Evans, C.G.T., Melling, J. (Eds.), Continuous Culture 6: Applications and New Fields. Ellis Horwood, Chichester. Chapter 23, 297–314.
27. Harder, W., Dijkhuisen, L., and Veldkamp, H.,1984. The Microbe. PII. Cambridge Univ.Press, Cambridge, UK. 51-95
28. Hayes, H.M., et al., 1991. Case-Control Study of Canine Malignant Lymphoma: Positive Association With Dog Owner’s Use of 2,4-Dichlorophenoxyacetic Acid Herbicides. Journal of the National Cancer Institute. 83, 1226-1231.
29. Hendrikson, H., Larsen, S., and Ahring, B., 1991. Anaerobic degradation of PCP and phenol in fixed-film reactors, the influence of an additional substrate. Water Science and Technology. 24, 431-436.
30. Hill, N.P., MacIntyre, A.E., Perry, R., and Lester, J.N., 1986. Behaviour of chlorophenoxy herbicides during activated sludge treatment of municipal wastewater. Water Res. 20, 45-52.
31. Holland, P., and Anis, R., 1999. Pesticide trends in New Zealand. Ministry of Agriculture Technical Paper, Wellington, New Zealand.
32. Jo, K., Silverstein, J., 2004. Acclimation of activated sludge to degrade toxic levels of 2,4-dinitrophenol. Water Sci Technol, 50(5), 45 – 50.
33. Keuth, S. and Rehm, H., 1991. Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil. Applied Microbiology and Biotechnology. 34, 804-808.
34. Kim, J., Smith, A., 2001. Distribution of organochlorine pesticides in soils from South Korea. Chemosphere. 43, 137-140.
35. Kogevinas, M., 1995. Soft Tissue Sarcoma and non-Hodgkins Lymponmain Workers exposed to phenoxy-herbicides, chlorophenols, and dioxins – 2 nested case studies. Epidemiology. 6 (4), 396-402.
36. Kohli, J.D., Khanna, R.N., Gupta, B.N., Dhar, M.M., Tandon, J.S., Sircar, K.P., 1974. Absorption and excretion of 2,4-dichlorophenoxyacetic acid in man. Xenobiotica 4, 97-100.
37. Kong, L.J., and Lemley, A.T., 2006. Kinetic Modeling of 2,4-Dichlorophenoxyacetic acid (2,4-D) degradation in soil slurry by anodic fenton treatment. J. Agric. Food Chem. 54, 3941-3950.
38. Kovarova-Kovar, K., Egli, T., 1998. Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixedsubstrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666.
38. Lackmann, R.K., Maier,W.J., Shamat, N.A., 1980. Proceedings of the 35th Purdue University Industrial Waste Conference. Ann Arbor press, Chelsea, MI. 502-515.
39. Lee, K., Park, J.W., Ahn, I.S., 2003. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. Journal of Hazardous Materials. 105, 157-167.
40. Lenntech http://www.lenntech.com/wwtp/wwtp-activated-sludge-process.htm
41. Linkfield, T., Suflita, J., Tiedje, J., 1989. Characterization of the acclimation period before anaerobic dehalogenation of halobenzoates. Applied and environmental microbiology. 55(11), 2773-2778.
42. Liu, P.H., Svoronos, S.A., Koopman, B., 1998. Experimental and modeling study of diauxic lag of Pseudomonas denitrificans switching from oxic to anoxic conditions. Biotechnol. Bioeng. 60 (6), 649–655.
43. Mangat, S.S., and Elefsiniotis, P., 1999. Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid in sequencing batch reactors. Wat. Res. 33 (3), 861-867.
44. Meric, S., Eremektar, G., Ciner, F., and Tunay, O., 2003. An OUR-bacsed approach to determine toxic effects of 2,4-dichlorophenoxyacetic acid in activated sludge. Journal of Hazardous Materials. 101, 147-155.
45. Mihelcic, J., and Luthy, R., 1988. Degradation of polycyclic aromatic hydrocarbon under various redox conditions in soil-water systems. Applied and Environmental Microbiology. 54, 1182-1187.
46. Monod, J., 1942. Recherches sur la croissance des cultures bacte´ riennes (Studies on the growth of bacterial cultures). Actua. Sci. Ind. 911, 1–215.
47. Monod, J., 1947. The phenomenon of enzymatic adaptation and its bearings on problems of genetics and cellular differentiation. Growth. 11, 223–289.
48. Narang, A., 2006. Comparative analysis of some models of gene regulation in mixed – substrate microbial growth. Journal of Theoretical Biology. 242, 489-501.
49. Neidhardt, F.C., Magasanik, B., 1957. Reversal of the glucose inhibition of histidase biosynthesis in Aerobacter aerogenes. J. Bacteriol. 73 (2), 253–259
50. Orhon, D., Talinli, I., and Tnay, O.,1989. The fate of 2,4-D in microbial structures. Water Res. 23, 1423-1430.
51. Pandit, G.G., Mohan-Rao, A.M., Jha, S.K., Krishnamoorthy, T.M., Kale, S.P., Raghu, K. Mangrat, S.S., 1997. Biological degradation of the phenoxy acid herbicide 2,4-dichlorophenoxyacetic acid. M.Sc. thesis, University of Manitoba, Winnipeg, Man.
52. Papanastasious, A., Maier, W., 2004. Dynamics of biodegradation of 2,4-dichlorophenoxyacetate in the presence of glucose. Biotechnology and Bioengineering. 25(10), 2337-2346.
53. Que Hee, S.S., and Sutherland, R.G., 1981. The phenoxyalkanoic herbicides. Chemistry, analysis, and environmental pollution. Chemical Rubber Company Series in Pesticide Chemistry. CRC Press, Boca Raton, FL. I
54. Rozich, A.F., and Gaudy, A.F. Jr., 1992. Design and operation of activated sludge processes using respirometry. Lewis pubishers.
55. Shoda, M., Udaka, S., 1980. Preferential utilization of phenol rather than glucose by Trichosporon cutaneum possessing a partially constitutive catechol 1,2-oxygenase. Applied and environmental microbiology. 39(6), 1129-1133.
56. Sinton, G.L., Fan, L.T., Erickson, L.E., Lee, S.M., 1986s. Biodegradation of 2,4-D and related xenobiotic compounds. Enzyme and Microbial technology. 8 (7), 395-403.
57. Swindoll, C., Aelion, C., and Pfaender, F., 1988. Influence of inorganic and organic nutrients on biodegradation and on the adaptation response of subsurface microbial communities. Applied and Environmental Microbiology. 52, 212-217.
58. Topp, E., and Hanson, R., 1990. Degradation of pentachlorophenol by a Flavobacterium species grown in a continuous culture under various nutrient limitations. Applied and Environmental Microbiology. 56, 541-544.
59. Tyler, J.E., and Finn, R.K., 1974. Growth rates of Pseudomonas on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol. Appl. Microbiol. 28, 181- 184.
60. Vroumsia, T., Steiman, R., Seigle-Murandi, F., Benoit-Guyod, J.L., 1999. Effects of culture parameters on the degradation of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol by selected fungi. Chemosphere. 39 (9), 1397-1405.
61. Wiggins, B., Alexander, M., 1988. Role of chemical concentration and second carbon sources in acclimation of microbial communities for biodegradation. Applied and environmental microbiology. 54 (11), 2803-2807.
62. Wilson, G.J., Suidan, M.T., Maloney, S. W., and Brennerm, R.C., 1997. The biodegradation of 2,4-D industrial wastewater utilizing a pilot scale anaerobic GAC-FBR in Eastern Europe. Proceedings of WEFTEC 97 - 70th Annual Conference and Exposition, Chicago III. Paper No. 9771004.
63. World Health Organization., 1984. 2,4-Dichlorophenoxyacetic acid (2,4-D). Environmental Health Criteria 29. International Programme on Chemical Safety, Geneva.
64. Young, E., Oh, D.J., and Hill, B., 2006. http://umbbd.msi.umn.edu/2,4-d/2,4-d_image_map2.html.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top