跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/09 14:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李志偉
研究生(外文):Li,Zhi Wei
論文名稱:具迴授控制之單缸四行程汽油引擎噴射系統的開發
論文名稱(外文):Development of Fuel Injection System with Feedback Control for Single Cylinder 4-Shoke Gasline Engine
指導教授:洪振義洪振義引用關係羅正忠羅正忠引用關係
指導教授(外文):cyhongRo,Jeng-Jong
學位類別:碩士
校院名稱:大葉大學
系所名稱:機電自動化研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:102
中文關鍵詞:引擎控制單元廣域含氧感測器
外文關鍵詞:ECULSU
相關次數:
  • 被引用被引用:3
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究目的是在發展一個具迴授的電子噴射引擎控制系統。針對一顆 HONDA 25CC 四行程單缸化油器引擎本體,改裝成電子噴射引擎,設計進氣歧管改裝一只噴油嘴以及加裝節氣門開度於進氣歧道,並在各處加上訊號感知器。閉迴路控制是將廣域含氧感知器的迴授訊號,針對控制器做調校,量測數據並分析控制器的穩定性,根據所欲達到廢氣污染的標準進一步對噴油脈寬進行微調。

  研究方法乃是針對以微電腦單晶片8051作為燃油噴射系統控制核心單元。以HONDA GX-25OHC本體,改變進氣系統,並製作專用供油電腦。透過以引擎轉速轉角、TPS節氣門開度感測及廣域含氧感知器為控制參數。利用設計規劃的引擎控制單元,改善並增加引擎之馬力與扭力。事前規劃行車環境條件,以建立最佳化馬力下燃油控制,以及最具效能絕對空燃比下的燃油控制。並以最佳噴油區間、噴油提前角、點火提前角,加入噴油區間及提前角資料庫。以曲軸與凸輪軸之訊號對應出壓縮及進氣上死點。並以C語言撰寫引擎閉迴路控制程式。

  規劃行車資料庫,計算出最佳的噴油提前角、噴油區間、點火提前角,以進氣及壓縮上死點作為噴油及點火觸發之依據。回饋轉速與節氣門開度抓取資料庫噴油區間及提前角。排放空氣污染控制機制,以廣域含氧感知器做最後回饋噴油脈寬微調,也是本車防止污染最後一道防線。主要目的改良市面機車窄域上無法判斷空燃比多少的缺點。並針對本實驗設計含氧感測器迴路控制器的穩定性及穩定時間做分析,將以量測不同空燃比下之曲線來判斷控制器的可靠度。

  並且製作專用的EFI供油電腦,建立最佳化馬力下燃油控制,以及最具效能絕對空燃比下的燃油控制。利用所完成的引擎控制單元做閉迴路控制,並加上動力系統測試機,測量數據將建立以作於比對原廠之用,當然廢氣排放標準控制能達到環保標準。
  The purpose of this research is to develop an electric injection control system for a single cylinder engine with active control. To the essence of HONDA 25CC four-stroke single cylinder engine, it has been converted into an electric injection engine. The intake manifold with addition of TPS sensors is replaced by the fuel injection system. We installed several sensors in the engine for the purpose of monitoring and feedback control. The closed loop control has been achieved by fed back the signal from LSU. Then the fuel injection controller was fine tuned according to the standard of vehicular pollution.

  The approach of this research is to use 8051chips as fuel injection system ECU. To the essence of HONDA GX-25 OHC, we modified the intake system and designed a special-purpose computer to control the fuel supply to the engine. Based on the sensed values of engine RPM, TPS Sensor and wide range O2 sensor which are the control parameters, we designed and fabricated engine ECU in order to improve and to increase horsepower and torsion of the engine. Based on a pre-planned driving schedule, we constructed an optimum fuel injection control map for the best power performance as well as the most effective air-fuel ratio. Also, we build database by optimizing injection block, fuel injection advancing angle, and ignition advancing angle. The signals of bent axle and camshaft are used to find the corresponding compression and TDC values. Finally, we program the active engine control system using C language.

  Based on the pre-planned driving schedule, the optimization fuel injection advancing angle, fuel injection block, and ignition advancing angle are calculated. Then fuel is injected into the engine and ignited according to intake and TDC conditions. By feedback of engine RPM and TPS, the injection block and advancing angle are determined from the database. The mechanism for air pollution control is that the LSU signal is fed back to fine turn the block of the fuel injection, and it was also the last measure to reduce air pollution. The purpose is to improve the deficiency of the commercial motorcycles of which the air-fuel ratio can not be determined.

  We made the special-purpose EFI computer to support fuel, and built injection control with optimization horsepower and effective air-fuel ratio. By using ECU active control and dynamical system testing machine, our experimental result can reach the environmental protection standard.
目錄

封面內頁
簽名頁
授權書﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒iii
中文摘要﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒iv
英文摘要﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒vi
誌謝﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒viii
目錄﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ix
圖目錄﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒xiii
表目錄﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒xvii
符號說明﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒xviii

第一章 緒論
    1.1 前言﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒1

第二章 研究背景及目的
    2.1 研究背景﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒2
    2.2 研究目的﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒3
    2.3 國內外相關研究情況﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒5

第三章 實驗設備與研究方法
    3.1 實驗設備之建立與量測方法
       3.1.1 實驗引擎設備﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒8
       3.1.2 實驗引擎廢氣分析設備﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒9
       3.1.3 電子噴射系統之組成﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒11
    3.2 實驗步驟與研究方法
       3.2.1 噴射系統架設﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒24
       3.2.2 實驗前準備工作﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒26
       3.2.3 研究方法﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒27

第四章 引擎控制單元設計流程
    4.1 行車策略
       4.1.1 電子噴射系統控制單元﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒30
       4.1.2 發動熄火模式規劃﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒31
       4.1.3 怠速模式規劃﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒31
       4.1.4 急加減速模式規劃﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒31
       4.1.5 超轉斷油模式規劃﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒32
       4.1.6 含氧感知器修正空燃比規劃﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒32
       4.1.7 轉速及節氣門開度對應當量比﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒32
       4.1.8 轉速對應噴油提前角﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒32
       4.1.9 轉速對應點火提前角﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒33
    4.2 引擎控制單元的製作
       4.2.1 節氣門位置感知器訊號判斷﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒33
       4.2.2 轉速與曲軸位置信號判斷﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒34
       4.2.3 含氧感知器訊號信號判斷﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒34
       4.2.4 電路板之規劃﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒35
    4.3 系統程式流程
       4.3.1 程式流程規劃﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒42
       4.3.2 系統主程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒43
       4.3.3 節汽門開度初始設定副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒44
       4.3.4 增減油副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒44
       4.3.5 七段式顯示器副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒45
       4.3.6 節氣門開度轉換設定副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒46
       4.3.7 增濃模式斷油模式判斷副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒47
       4.3.8 起動馬達啟動副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒48
       4.3.9 起動馬達停止副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒48
       4.3.10 引擎轉速計算副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒49
       4.3.11 噴油角計算副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒50
       4.3.12 點火角計算副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒50
       4.3.13 含氧感知器訊號轉換副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒51
       4.3.14 讀取data副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒52
       4.3.15 泵電池控制副程式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒52
       4.3.16 外部0中斷函數﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒53
       4.3.17 計時器0中斷函數﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒54
       4.3.18 計時器1中斷函數﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒54
       4.3.19 計時器2中斷函數﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒55
       4.3.20 可編程計數器陣列PCA(void)interrupt 6﹒﹒﹒﹒﹒﹒﹒﹒﹒56
    4.4 控制器穩定性與穩定時間分析
       4.4.1 各空燃比下節汽門開度瞬間變化曲線﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒57
       4.4.2 瞬間變化節汽門開度下各個λ-Time瞬間變化曲線﹒﹒﹒﹒﹒59
       4.4.3 各個空燃比下轉速與時間瞬間變化曲線﹒﹒﹒﹒﹒﹒﹒﹒﹒68
       4.4.4 空燃比與值轉速穩定性分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒75
       4.4.5 各個空燃比下轉速與節汽門開度變化曲線﹒﹒﹒﹒﹒﹒﹒﹒92

第五章 結論與未來展望
    5.1 結論﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒93
    5.2 未來展望﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒94

參考文獻﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 96
附錄﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 99
個人簡歷﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 100
[1]Heather L., Maclean, and Lester B. Lave, “Evaluating automobile fuel/propulsion system technologies,” Progress in Energy and Combustion Science, 29, 1-69 (2003).
[2]www.ttvmaorg.tw
[3]http://w3.epa.gov.tw/epalaw/docfile/040160_6.doc.
[4]D.R. Cohn, L. Bromberg, and J.B. Heywood, “Direct Injection Ethanol Booted Gasoline Engines: Biofuel Leveraging for Cost Effective Reduction of Oil Dependence and CO2 Emissions,” Massachusetts Institute of Technology, (April 20, 2006).
[5]Mohamed Y.E. Selim, “Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition,” Energy Conversion and Management 45, 411–425(2004).
[6]Bang-Quan He, Jian-Xin Wang, Ji-Ming Hao, Xiao-Guang Yan, and Jian-Hua Xiao, “A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels,” Atmospheric Environment 37, 949–957(2003).
[7]Troy A. Semelsberger, Rodney L. Borup, and Howard L. Greene, “Dimethyl ether (DME) as an alternative fuel,” Journal of Power Sources 156, 497–511(2006).
[8]Minoru Osuga, Yoshiyuki Tanabe, Shinya Igarashi, Masahiro Zaitsu, Takuya Shiraishi, and Motoyuki Abe, “New Direct Fuel Injection Engine Control Systems for Meeting Future Fuel Economy Requirements and Emission Standards,” Hitachi Review Vol. 53, 193-199, No. 4(2004).
[9]Tatsushi Nakashima, Masatoshi Basaki, Kimitaka Saito, and Shigeo Furuno, “New concept of a direct injection SI gasoline engine: a study of stratified charge combustion characteristics by radical luminescence measurement,” JSAE Review 24, 17–23(2003).
[10]Masao Kano, Kimitaka Saito, Masatoshi Basaki, Souichi Matsushita, and Takeshi Gohno,“Analysis of mixture formation of direct injection gasoline engine,” JSAE Review 20, 31-39(1999).
[11]Rossella Rotondi and Gino Bella, “Gasoline direct injection spray simulation,” International Journal of Thermal Sciences 45, 168–179(2006).
[12]F. Zhao, M.C. Lai, and D.L. Harrrington, “Automotive spark-ignited direct-injection gasoline engines,” Progress in Energy and Combustion Science, 25, 437-562 (1999).
[13]林雍傑,2004,“電子噴射機車引擎省油低汙染及高性能動力特性ECU MAP 建立”,國立雲林科技大學,碩士論文。
[14]陳英鴻,2003,“機車引擎電子燃油噴射控制對引擎性能及廢氣排放之影響”,國立雲林科技大學,碩士論文。
[15]陳聖中,2003,“單缸引擎電子燃油系統對性能之研究”,大葉大學,碩士論文。
[16]曾中志,2003,“引擎噴油點火之控制策略研發”,華梵大學,碩士論文。
[17]李福星、曾劭鈞,“高速機車引擎噴射控制系統之建立與實驗分析”,第十九屆中國機械工程學術研討會,頁94-101,2002 年11 月。
[18]Chan-Wei Wu, Rong-Horng Chen, Jen-YungPu, and Ta-Hui Lin, “The influence of air-fuel ratio on engine performance and pollutant emission of an SI engine using ethanol-gasoline-blended fuels,” Atmospheric Environment 38, 7093-7100(2004).
[19]徐文福,2001,“氣油直噴引擎缸壓量測與均質稀薄燃燒之性能分析”,中原大學,碩士論文。
[20]洪振義、洪瑞桐, “270cc 電控單缸汽油噴射引擎之馬力與扭力測試,” 第二十二屆機械工程研討會,論文集, B6-011, 2005 年11 月。
[21]洪振義、陳建全,“The Study of Fuel Saving of a 25cc Single-Cylinder engine with Electronic Gasoline Injection System,” 第二十二屆機械工程研討會,論文集, B6-010, 2005 年11 月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top