跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 06:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝昌甫
研究生(外文):Chang-Fu Shieh
論文名稱:新型並聯式複合電動重型機車之一體式馬達/發電機驅動器與控制器研製
論文名稱(外文):Development of an Integrated Motor/Generator Driver and Controller for a New Parallel Hybrid Electric Heavy Motorcycle
指導教授:蔡耀文
指導教授(外文):Yao-Wen Tsai
學位類別:碩士
校院名稱:大葉大學
系所名稱:機電自動化研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:61
中文關鍵詞:複合電動車一體式馬達/發電機數位訊號處理器線性矩陣不等式可變結構系統
外文關鍵詞:Hybrid electric heavy motorcycle (HEV)Integrated motor/generator (IMG)Linear matrix inequality (LMI)Variable structure system (VSS)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著環保意識抬頭與全球暖化的危機浮現,如何減緩對環境的汙染已成為當前迫切的議題。在大眾運輸方面,傳統內燃機雖然排氣污染較嚴重,但結合內燃機之優點與電動馬達的特性之複合電動車(Hybrid Electric Vehicle,HEV)是目前省能且低污染具環保概念車輛的主流。
基於複合電動車輛的重要,本論文發展一種新型並聯式複合電動型機車之一體式馬達/發電機驅動器與控制器研製,在電控系統中,使用數位訊號處理器(DSP)作為各元件訊號溝通與處理整個系統的完整運作。本論文的理論分析是藉由線性矩陣不等式(LMI)方法應用在非匹配不確定輸出回授可變結構系統(VSS),經由此理論推導之控制器,能有效減少非匹配不確定成份的不良影響,確保系統穩定而且性能良好。
本論文根據實際系統建構車輛在各種路面及負載狀況下運轉特性,並藉由實驗平台的系統零組件配置及行車模式的測試操控,實際驗證此種新型並聯式複合電動型機車之單一動力輸出與雙動力整合之功能與成效。
本論文也實際建構一台原型車,此原型車並也於今年四月的台北國際車用電子展中展示。
In recent years, as the environmental protection cost has risen and global warming, it is important to slow down the environment from pollution. If the merits of both the internal combustion engine and the electric motor can be integrated to become a hybrid electric vehicle, HEV, it must have ultra-low emission and energy-saving but still keeping high performance.
The central purpose of this study was to develop an integrated motor/generator (IMG) driver and controller. Electronic control systems used by digital signal processor (DSP). The linear matrix inequality (LMI) method is applied in the design of dynamic output feedback controller for mismatched uncertain variable structure system (VSS). According to this new LMI theory based output feedback variable structure control (VSC), the mismatched variable structure system is asymptotically stable with better performance.
In this study, simulate analyze of integral system which the vehicle operate under variations of vehicle load. As for the construction of the test platform, the components have been allocated and real tests have verified the function of the single power output and the integration of two different powers.
In this study, the prototype of the hybrid electric heavy-duty motorcycle has established and it has been displayed on the Taipei world trade center.
INSIDE FRONT COVER
SIGNATURE PAGE
AUTHORIZATION COPYRIGHT STATEMENT......iii
ENGLISH ABSTRACT.....iv
CHINESE ABSTRACT.....v
ACKNOWLEDGMENT.....vi
TABLE OF CONTENTS.....vii
LIST OF FIGURES.....ix
ABBREVIATIONS AND SYMBOLS.....xi

CHAPTER I. INTRODUCTION
1.1 Motivation.....1
1.2 Organization.....4
CHAPTER II. FRAMEWORK AND ENERGY MANAGEMENT STRATEGY OF THE NEW PARALLEL-TYPE HYBRID ELECTRIC SYSTEM
2.1 Series Hybrid System.....3
2.2 Parallel Hybrid System.....4
2.3 Series-Parallel Hybrid System.....5
2.4 Newly Parallel-type Hybrid Electric System.....6
2.5 Introduction to the experimental platform.....8
CHAPTER III ESTABLISHING SYSTEM DYNAMIC EQUATIONS AND MODELS
3.1 The Electric Motor Model.....12
3.2 The Internal Combustion Engine Model.....14
3.3 Dual Energy Integration Mechanism Model.....14
3.4 Vehicles Travel Environment Model.....16
3.4.1 Acceleration Resistance.....16
3.4.2 Rolling Resistance.....17
CHAPTER IV. THE DESIGN OF AN INTEGRATED MOTOR/GENERATOR DRIVER AND CONTROLLER
4.1 Introduction the BLDC motor.....19
4.2 The BLDC motor driver.....20
4.3 Pulse-Width Modulation (PWM).....23
4.4 The TMS320LF2407 family.....26
4.5 Torque controller.....27
4.6 Generator driver.....30
CHAPTER V. SIMULATION AND EXPERIMENT RESULTS
5.1 Simulation results.....32
5.2 Experiment Results.....34
5.3 Low power control procedure.....34
5.4 High power control procedure.....38
CHAPTER VI. TOTALLY INVARIANT OUTPUT FEEDBACK CONTROL FOR MISMATCHED UNCERTAIN
6.1 Introduction.....42
6.2 Statement of the Problem.....42
6.3 Stability in the Sliding Mode.....45
6.4 Design the Controller.....48
6.5 System in the Sliding Mode Behavior.....51
CHAPTER VII. CONCLUSIONS.....54
[1]S. Onoda, S. M. Lukic, A. Nasiri and A. Emadi, “A PSIM-based modeling tool for conventional, electric, and hybrid-electric vehicles studies,” In: Vehicular Technology Conference, VTC 2002-Fall IEEE, vol. 3, pp. 1676-1680, 2002.
[2]K. T. Chau and Y. S. Wong, “Overview of power management in hybridelectric vehicles,” Energy Conversion and Management, vol. 43, No. 15, pp. 1953-1968, 2002.
[3]H. Xiaoling, J. W. Hodgson, “Modeling and simulation for hybrid-electric vehicles. Intelligent Transportation Systems,” IEEE Trans. on Intelligent Transportation System, vol. 3, No. 4, pp. 235-243, 2002.
[4]H. Xiaoling, J. W. Hodgson, “Modeling and simulation for hybrid-electric vehicles. II. Modeling. Intelligent Transportation Systems,” IEEE Trans. on Intelligent Transportation System, vol. 3, No. 4, pp. 244-251, 2002.
[5]N. J. Schouten, M. A. Salman and N. A. Kheir, “Energy management strategies for parallel hybrid-vehicles using fuzzy logic,” Control Engineering Practice, vol. 11, pp.171-177, 2003.
[6]Hybrid Synergy Drive. 2007. Toyota Motor Corporation. 15 Jun. 2007 http://www.hybridsynergydrive.com/.
[7]Z. L. Fan, “Study of Dynamic Simulation and Control of a New Parallel Hybrid Electric Power System,” Department of Mechanical and Automation Engineering College of Engineering Dayeh university, 2005.
[8]H. Y. Su, “Study of a New Parallel Hybrid Electric Power System,” Department of Mechanical and Automation Engineering College of Engineering Dayeh university, 2005.
[9]I. J. Nagrath and M. Gopal “Control Systems Engineering,” CENTRAL BOOK COMPANY, 1985.
[10]K. David Huang, Y. W. Tsai, S. C. Chang, C. Y. Wua, C. C. Lub. “Study of System Energy Management of Parallel Hybrid Electric Heavy Motorcycle,” AVEC, 2006.
[11]S.C. Tzeng, K.D. Huang and C.C. Chen, “Optimization of the Dual Energy Integration Mechanism in a Parallel-type Hybrid Vehicle,” Applied Energy, vol. 80, Issue 3, pp. 225-245, 2005.
[12]C. S. Lin,” On the Study of the Transmission Mechanism System of the Parallel Hybrid Power Motorcycle and Its Dynamic Characteristics”, Department of Mechanical and Automation Engineering College of Engineering DAYEH UNIVERSITY, 2005.
[13]R. W. Erickson and D. Maksimovic, “Fundamentals of power electronics,” Kluwer Academic Publishers, 2nd ed., 2001.
[14]C. H. Yang, “Electrical Control System and Li-ion Battery Management System of Parallel Hybrid Electric Heavy Motorcycle,” Department of Mechanical and Automation Engineering College of Engineering Da-Yeh University, 2006.
[15]International Rectifier – The Power Management Leader. 2007. International Rectifier. 15 Aug. 2005 http://www.irf.com/indexsw.html
[16]Y. T. Hsueh, “A Study of Smart IGBTs Desgin,” Department of Electrical Engineering College of Engineering Da-Yeh University, 2003.
[17]J. Zeng, P. A. Mawby, M. S. Towers, K. Board, “Effect of carrier lifetimes on forward characteristics of MOS-controlled thyristors,” Circuits, Devices and Systems, IEE Pro., vol. 142, 1995.
[18]J. W. Dixon and I. A. Leal, “Current Control Strategy for Brushless DC Motors Based on a Common DC Signal,” IEEE Trans. on Industrial Electronics, pp. 232-240, 2002.
[19]H. H. Choi, “An explicit formula of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties” Automatica, vol. 34, pp. 1015-1020, 1998.
[20]H. H. Choi, “On the existence of linear sliding surfaces for a class of uncertain dynamic system with mismatched uncertainties,” Automatica, vol. 35, pp. 1707-1715, 1999.
[21]S. H. Zak, and S. Hui, “On variable structure output feedback controllers for uncertain dynamic systems,” IEEE Transactions on Automation Control, vol. 38, pp. 1509-1512, 1993.
[22]C. M. Kwan, “On variable structure output feedback controllers,” IEEE Trans.
on Automation Control,” vol. 41, pp. 1691-1693, 1996.
[23]P. P. Khargonekar, I. R. Petersen and K. Zhou, “Robust stabilization of uncertain linear systems: quadratic stabilizability and control theory,” IEEE Trans. on Automation Control, vol. 35, pp. 356-361, 1990.
[24]K. K. Shyu and J. C. Hung, “Totally invariant variable structure control systems,” Proceedings of the IECON’97, vol. 3, New Orleans, pp. 1119-1123, 1997.
[25]Y. W. Tsai and K. H. Mai, “Output feedback variable structure controller with totally invariance property,” Proceedings of the 2004 Automatic Control Conference, R. O. C., pp. 290-293, 2004.
[26]K. K. Shyu, Y. W. Tsai and C. K. Lai, “A dynamic output feedback controllers for mismatched uncertain variable structure systems,” Automatica, vol. 37, pp. 775-779, 2001.
[27]Taiwan Trade Centre Ltd., “Taipei International Automobile Electronics Show,” Auto Tronics Taipei 2007. Apr, pp. 25-28, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top