跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 05:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方佩珊
研究生(外文):Pei-Shan Fang
論文名稱:花草茶萃取物中迷迭香酸和咖啡酸的含量分析
論文名稱(外文):Determination of Rosmarinic Acid and Caffeic Acid Contents in Herbal Tea Extracts
指導教授:吳芳禎
指導教授(外文):Fang-Chen Wu
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系碩士在職專班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:74
中文關鍵詞:花草茶迷迭香酸咖啡酸高效能液相層析
外文關鍵詞:herbal tearosmarinic acidcaffeic acidHeigh Performance Liquid Chromatography
相關次數:
  • 被引用被引用:1
  • 點閱點閱:958
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
本研究針對自然界中的酚類化合物-迷迭香酸(rosmarinic acid, RA)和咖啡酸(caffeic acid, CA)二種常見的酚酸,利用高效能液相層析儀,建立其定量分析方法。
本研究採用逆相C18層析管柱,光電二極體陣列偵測器波長330 nm,流速1.0 mL/min,移動相組成為氰甲烷和0.05 M磷酸氫二鈉水溶液,以梯度移動的方式進行沖提。結果顯示迷迭香酸的滯留時間約為30分鐘,而咖啡酸則為9分鐘。當線性濃度範圍在1~ 100 μg/mL內,呈現良好的線性關係(相關係數大於0.99)。迷迭香酸及咖啡酸的偵測極限分別為0.54及0.12 μg/mL,而定量極限分別為1.80及0.40 μg/mL。將此法實際運用於市售之十二種花草茶材料檢測,所得回收率均高於91%,顯示此分析方法,適用於咖啡酸和迷迭香酸的分析。
分別以47.5%乙醇、95%乙醇、70 ℃及50 ℃水等四種不同的溶劑萃取下,迷迭香所含有的RA含量為最高,分別是10.38 ±0.08、7.77 ±0.04、3.21 ±0.05和2.01 ±0.00 mg/g萃取物。而在47.5%乙醇和95%乙醇萃取下,RA含量最低的是菩提葉,分別為0.43 ± 0.01和0.32 ± 0.00 mg/g萃取物。在70 ℃和50 ℃水中,以檸檬馬鞭草所含的RA最低,分別是0.13± 0.00和0.07± 0.00 mg/g萃取物。除薄荷葉在70 ℃及50 ℃水萃取液沒有明顯差異外,其餘花草茶在四種溶劑中均有明顯差異(p<0.05)。整體而言,在47.5%乙醇萃取下,對迷迭香酸有較佳的萃取效果。
在47.5%乙醇萃取下,CA含量最高的是檸檬草1.88 ± 0.01 mg/g萃取物。而在95%乙醇萃取下,鼠尾草1.64 ± 0.00 mg/g萃取物含量最高。在47.5%乙醇和95%乙醇萃取下,檸檬馬鞭草1.04 ± 0.00 mg/g萃取物最低,且沒有明顯差異。在70 ℃水萃取下,迷迭香0.79 ±0.01 mg/g萃取物含量最高。而菩提葉、檸檬草及矢車菊間無明顯差異,及矢車菊和薄荷葉間亦無明顯差異外,其餘樣品均有顯著差異(p<0.05)。若以50 ℃水進行萃取,CA含量最高的是鼠尾草0.84 ±0.01 mg/g萃取物。結果顯示,除了菩提葉和香蜂葉、迷迭香和檸檬馬鞭草、及洋甘菊和檸檬草間無明顯差異外,其餘樣品均有顯著差異(p<0.05)。對咖啡酸而言,在47.5%及95%乙醇比70 ℃及50 ℃水有較佳的萃取效果。
In this study, a high performance liquid chromatography (HPLC) method was developed to analyze two nature phenolic compounds, rosmarinic acid (RA) and caffeic acid (CA) quantitatively.
The separation system consisted of a C18 reversed-phase column, a gradient elution system of acetonitrile and 0.05 M sodium monohydrogen phosphate buffer, and a photodiode array detector. Detection wavelength was 330 nm. The flow rate was 1.0 mL/min. Retention time of RA and CA standards were about 30 and 9 minutes, respectively. Linear regression relationship was good (r>0.99) between peak areas and concentrations in the range of 1 to 100 μg/mL. Detection limit of RA and CA were 0.54 and 0.12 μg/mL, and the limit of quantification were 1.80 and 0.40 μg/mL respectively. Recovery of both were greater than 91%.
Ethanol(47.5% and 95%), 70 ℃ and 50 ℃ water were used to investigate the effect of solvents on the extraction of RA and CA from commercial herbal teas. Results indicated that RA content of Rosmarinus officinalis were 10.38±0.08, 7.77± 0.04, 3.21±0.05 and 2.01±0.00 mg/g extract in four solvents, respectively. However, the content of RA in Rosmarinus officinalis was the highest among those. It was found that there was the lowest RA content in Tilia sp. using 47.5% and 95% ethanol- 0.43±0.01 and 0.32±0.00 mg/g extract, respectively. In the meantime, RA content of Lippia citriodora in 70 ℃ and 50 ℃ water were the lowest among those-0.13±0.00 and 0.07±0.00 mg/g extract, respectively. In addition to Mentha piperita in 70 ℃ and 50 ℃ water, RA content of others showed significant difference(p<0.05) in different solvents of extraction. In a word, 47.5% ethanol was the best extraction solvent for RA.
Cymbopogon sp. got the highest CA content using 47.5% ethanol extraction which was 1.88±0.01 mg/g extract. However, CA content of Salvia officinalis was the highest among those using 95% ethanol. Lippia citriodora showed the lowest CA content-1.04±0.00 mg/g extract in both 47.5% and 95% ethanol. While using 70 ℃ water as solvent, CA content of Rosmarinus officinalis was the highest-0.79±0.01 mg/g extract among those. In short, the results showed no significant difference among CA content in Tilia sp., Cymbopogon sp. and Centauea cyanus, and also between Centaurea cyanus and Mentha piperita. According to using 50 ℃ water as extraction solvent, CA content of Salvia officinalis was the highest-0.84±0.01 mg/g extract. And then results were stated that there were significant difference(p<0.05) except for three groups-(Tilia sp. and Melissa officinalis), (Rosmarinus officinalis and Lippia citriodora), and (Matricaria chamomilla and Cymbopogon sp.). Between those groups were no significant difference in CA content. For CA extraction, 47.5% and 95% ethanol showed better results than solvent of water.
授權書 iii
中文摘要 iv
英文摘要 vi
誌謝 viii
目錄 ix
圖目錄 xii
表目錄 xv

第一章 緒言 1
第二章 文獻回顧 3
第一節 多酚類 3
一、化學結構 3
二、生物活性 4
三、吸收代謝 4
第二節 迷迭香酸 5
一、簡介 5
二、生物活性 8
三、吸收代謝 12
四、生化合成 12
第三節 咖啡酸 13
一、簡介 13
二、生物活性 15
三、生物合成途徑 17
第四節 分析方法 20
一、萃取 20
二、含量分析 21
三、HPLC分析條件 22
第三章 材料與方法 23
第一節 材料 23
一、花草茶材料 23
二、試藥 23
三、儀器 24
第二節 分析方法 24
一、花草茶樣品製備 24
二、標準品溶液之配製及檢量線之繪製 25
三、回收率 25
四、HPLC分析條件 25
五、統計分析 26
第四章 結果與討論 27
第一節 HPLC分析條件之探討 27
一、紫外光吸收波長的選擇 27
二、移動相的選擇 27
三、線性關係 28
四、分析靈敏度 29
五、回收率 29
第二節 迷迭香酸含量分析 30
第三節 咖啡酸含量分析 32
第五章 結論 35
參考文獻 44
附錄 51

圖目錄
圖一 多酚類化合物代謝途徑 6
圖二 迷迭香酸化學結構 7
圖三 迷迭香酸生化合成 14
圖四 咖啡酸化學結構 18
圖五 咖啡酸生化合成 19
圖六 UV吸收光譜圖 36
(a)咖啡酸標準品 36
(b)迷迭香酸標準品 36
圖七 迷迭香酸和咖啡酸標準品的層析圖 37
附圖一 47.5%乙醇萃取物層析圖 51
(a)迷迭香 51
(b)香蜂葉 51
(c)薄荷葉 52
(d)檸檬馬鞭草 52
(e)薰衣草 53
(f)紫羅蘭 53
(g)檸檬草 54
(h)菩提葉 54
(i)鼠尾草 55
(j)矢車菊 55
(k)金盞花 56
(l)洋甘菊 56
附圖二 95%乙醇萃取物層析圖 57
(a)迷迭香 57
(b)香蜂葉 57
(c)薄荷葉 58
(d)檸檬馬鞭草 58
(e)薰衣草 59
(f)紫羅蘭 59
(g)檸檬草 60
(h)菩提葉 60
(i)鼠尾草 61
(j)矢車菊 61
(k)金盞花 62
(l)洋甘菊 62
附圖三 70 ℃水萃取物層析圖 63
(a)迷迭香 63
(b)香蜂葉 63
(c)薄荷葉 64
(d)檸檬馬鞭草 64
(e)薰衣草 65
(f)紫羅蘭 65
(g)檸檬草 66
(h)菩提葉 66
(i)鼠尾草 67
(j)矢車菊 67
(k)金盞花 68
(l)洋甘菊 68
附圖四 50 ℃水萃取物層析圖 69
(a)迷迭香 69
(b)香蜂葉 69
(c)薄荷葉 70
(d)檸檬馬鞭草 70
(e)薰衣草 71
(f)紫羅蘭 71
(g)檸檬草 72
(h)菩提葉 72
(i)鼠尾草 73
(j)矢車菊 73
(k)金盞花 74
(l)洋甘菊 74

表目錄
表一 迷迭香酸和咖啡酸在不同溶劑下的標準曲線 38
表二 迷迭香酸和咖啡酸的精密度 39
表三 迷迭香酸在不同萃取溶劑下的回收率 40
表四 咖啡酸在不同萃取溶劑下的回收率 41
表五 花草茶在不同萃取溶劑下的迷迭香酸含量 42
表六 花草茶在不同萃取溶劑下的咖啡酸含量 43
1. 李榮貴、騰大為、杜貴彩和王斌。2000。紫蘇癒傷組織迷迭香酸的純化及抗菌活性研究。微生物學通報27(5):324-327。
2. 吳良、袁干軍和蘇秋玲。2006。高效液相色譜法測定迷迭香中迷迭香酸的含量。海南醫學院學報12(2):112-114。
3. 姚興東、聶國梅和Datta-Gupta, N.,。2006。紫錐花種屬中酚類化合物的HPLC分析。分析科學學報22(2):199-201。
4. 徐世霞和晁若冰。2005。RP-HPLC測定海金沙藤中咖啡酸的含量。華西藥學雜誌20(6):552-553。
5. 楊剛、杜守穎、吳清、郝博和洪燕龍。2004。HPLC法測定忍冬藤中綠原酸和咖啡酸含量。中國藥品標準5(4):47-49。
6. 鄒正午、徐理納和田金英。1993。迷迭香酸抗血栓和抗血小板聚集作用。藥學學報28(4):241-245。
7. 趙春貴、張立傳、王暉和黃登字。2005。肉桂酸及其衍生物抗氧化活性研究。食品科學26(1):218-222。
8. Ahn, S. C., Oh, W. N., Kim, B. Y., Kang, D. O., Kim, M. S., Heo, G. Y. and 0Ahn, J. S. 2003. Inhibitory effects of rosmarinic acid on Lck SH2 domain 0binding to a synthetic phosphopeptide. Planta Medica 69(7):642-646.
9. Bailly, F. and Cotelle, P. 2005. Anti-HIV activities of natural antioxidant caffeic 0acid derivatives:toward an antiviral supplementation diet. Current Medicinal 0Chemistry 12(15):1811-1818.
10. Bandoniene, D. and Murkovic, M. 2002. The detection of radical scavenging 0compounds in crude extract of borage (Borago officinalis L.) by using an 0on-line HPLC-DPPH method. Journal of Biochemical and Biophysical Methods 53:45-49.
11. Baranowski, J. D., Davidson, P. M., Nagel, C. W. and Branen, A. L. 1980. Inhibition of Saccharomyces cerevisiae by naturally occurring hydroxycinnamates. Journal of Food Science 45:592-594.
12. Boulton, D. W., Walle, U. K. and Walle, T. 1998. Extensive binding of the bioflavonoid quercetin to human plasma proteins. Journal of Pharmacy and Pharmacology 50(2):243-249.
13. Bowles, B. and Miller, A. J. 1994. Caffeic acid activity against Clostridium botulinum spores. Journal of Food Science 59(4):905-908.
14. Caniova, A. and Brandsteterova, E. 2001. HPLC analysis of phenolic acids in Melissa Officinalis. Journal of Liquid Chromatography & Related Technologies 24(17):2647-2659.
15. Chapuis-Lardy, L., Contour-Ansel, D. and Bernhard-Reversat, F. 2002. High performance liquid chromatography of water-soluble phenolics in leaf litter of three Eucalyptus hybrids (Conogo). Plant Science 163:217-222.
16. Chen, J. H. and Ho, C. T. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. Journal of Agricultural and Food Chemistry 45(7):2374-2378.
17. Cirico, T. L. and Omaye, S. T. 2006. Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation. Food and Chemical Toxicology 44:510-516.
18. Clifford, M. N. 1999. Chlorogenic acids and other cinnamates: nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture 79:362-372.
19. Clifford, M. N. 2000. Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden, absorption and metabolism. Journal of the Science of Food and Agriculture 80:1033-1043.
20. Dangles, O., Dufour, C., Manach, C., Morand, C. and Remesy, C. 2001. Binding of flavonoids to plasma proteins. Methods in Enzymology 335:319-333.
21. Davidson, P. M. and Parish, M. E. 1989. Methods for testing the efficacy of food antimicrobials. Food Technology 43(1):148-155.
22. Ellis, B. E. and Towers, G. H. N. 1970. Biogensis of rosmarinic acid in Mentha. The Biochemical Journal 118:291-297.
23. Exarchou, V., Troganis, A., Gerothanassis, I. P., Tsimidou, M. and Boskou, D. 2001. Identification and quantification of caffeic and rosmarinic acid in complex plant extracts by the use of variable-temperature two-dimensional nuclear magnetic resonance spectroscopy. Journal of Agricultural and Food Chemistry 49(1):2-8.
24. Facino, R. M., Carini, M., Aldini, G., Saibene, L., Pietta, P. and Mauri, P. 1995. Echinacoside and caffeoyl conjugates protect collagen from free radical-induced degradation : a potential use of Echinacea extracts in the prevention of skin photodamage. Planta Medica 61(6):510-514.
25. Farah, A. and Donangelo, C. M. 2006. Phenolic compounds in coffee. Revista Brasileira de Fisiologia Vegetal 18 (1):23-36.
26. Gao, T., Ci, Y., Jian, H. and An, C. 2000. FTIR investigation of the interaction of tumor cells treated with caffeic acid and chlorogenic acid. Vibrational Spectroscopy 24:225-231.
27. Georviev, M., Kovacheva, E., Marcheva, N. and Ilieva, M. 2006. Purification of rosmarinic acid extracts from Lavandula vera MM cell biomass. Food Chemistry 94:111-114.
28. Gűlçin, Ì. 2006. Antioxidant activiy of caffeic acid(3,4-dihydroxycinnamic acid). Toxicology 217(2-3):213-220.
29. He, Y. J., Liu, B. H., Xiang, D. B., Qiao, Z. Y., Fu, T. and He, Y. H. 2006. Inhibitory effect of caffeic acid phenethyl ester on the growth of SW480 colorectal tumor cells involves β-catenin associated signaling pathway down-regulation. World Journal of Gastroenterology 12(31):4981-4985.
30. Ho, P., Hogg, T. A. and Silva, M. C. M. 1999. Application of a liquid chromatographic method for the determination of phenolic compounds and furans in fortified wines. Food Chemistry 64:115-122.
31. Inoue, K. I., Takano, H., Shiga, A., Fujita, Y., Makino, H., Yanagisawa, R., Ichinose, T., Kato, Y., Yamada, T. and Yoshikawa, T., 2005. Effects of volatile constitusents of a rosemary extract on allergic airway inflammation related to house dust mite allergen in mice. International Journal of Molecular Medicine 16:315-319.
32. Janicsák, G., Máthé, I., Miklóssy-Váá, V. and Blunden, G. 1999. Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochemical Systematics and Ecology 27:733-738.
33. Jung, M. Y., Jeon, B. S. and Bock, J. Y. 2002. Free, esterified, and insoluble-bound phenolic acids in white and red Korean ginsengs (Panax ginseng C. A. Meyer). Food Chemistry 79:105-111.
34. Kandaswami, C. and Middleton E. J. 1994. Free radical scavenging and antioxidant antioxidant activity of plant flavondis. Advances in Experimental Medicine & Biology 366:351-376.
35. Kang, M. A., Yun, S. Y. and Won, J. 2003. Rosmarinic acid inhibits Ca2-dependent pathways of T-cell antigen receptor-mediated signaling by inhibiting the PLC-γ1 and Itk activity. Blood 101(9):3534-3542.
36. Kimura, Y. and Okuda, H. 1987. Studies on the activities of tannins and related compounds, X. effects of caffeetannins and related compounds on arachidonate metabolism in human polymorphonuclear leukocytes. Journal of Natural Products 50(3):329-339.
37. Kwak, W. J., Han, C. K., Kim, H. S., An, J. S. and Kim, T. S. 1999. Process of extracting and purifying biologically effective ingredient from combined medicinal plants and their extract composition. United Status Patent 5910307.
38. Mahmoud, N. N., Carothers, A. M., Grunberger, D., Bilinski, R. T., Churchill, M. R., Martucci, C., Newmark, H. L. and Bertagnollim, M. 2000. Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis. Carcinogenesis 21(5):921-927.
39. Manach, C., Scalbert, A., Morand, C., Remesy, C., and Jimenez, L . 2004. Polyphenols:food sources and bioavailability. The American Journal of Clinical Nutrition 79(5):727-747.
40. Mazumder, A., Neamati, N. and Sunder, S. 1997. Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. Journal of Medicinal Chemistry 40(19):3057-3063.
41. Milic, B. L., Djilas, S. M. and Canadanovic-Brunet, J. M. 1998. Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chemistry 61(4):443-447.
42. Moure, A., Cruz, J. M., Franco, D., Domínguez, J. M., Sineiro, J., Domínguez, H., Núñez, M. J.and Parajó, J. C. 2001. Natural antioxidants from residual sources. Food Chemistry 72:145-171.
43. O’Neil, M. J., Heckelman, P. E., Koch, C. B. and Roman, K. J. (Eds) 2006. The merck index (14th Ed.). p.1636. Merck & Co., Inc. New Jersey, USA.
44. Nomura, M., Kaji, A., Ma, W., Miyamogo, K. and Dong, Z. 2001. Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester. Molecular Carcinogenesis 31(2):83-89.
45. Ohnishi, M., Morishita, H., Iwahashi, H., Toda, S., Shirataki, Y., Kimura, M. and Kido, R. 1994. Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry 36(3):579-583.
46. Pearson, D. A., Frankel, E. N. and Asechbach, R. 1997. Inhibition of endothelia cell-mediated oxidation of low-density lipoprotein by rosmary and plant phenolics. Journal of Agricultural and Food Chemistry 45(3):578-582.
47. Petersen, M. and Simmonds, M. S. J. 2003. Rosmarinic acid. Phytochemistry 62(2):121-125.
48. Pomponio, R., Gotti, R., Hudaib, M. and Cavrini, V. 2002. Analysis of phenolic acids by micellar electrokinetic chromatography : application to Echinacea purpurea plant extracts. Journal of Chromatography A 945:239-247.
49. Razzaque, A. and Ellis, B. E. 1997. Rosmarinic acid production in Coleus cell cultures. Planta 137(3):287-291.
50. San, R. H. and Chen, R. I. 1987. Inhibitory effect of phenolic compounds on aflatoxin B1 metabolism and induced mutagensis. Mutation Research 177(2):229-239.
51. Sanbongi, C., Takano, H., Osakabe, N., Sasa, N., Natsume, M., Yanagisawa, R., Inoue, K., Kato, Y., Osawa, T. and Yoshikawa, T. 2003. Rosmarinic acid inhibits lung injury by diesel exhaust particles. Free Radical Biology & Medicine 34(8):1060-1069.
52. Scalbert, A., Morand, C., Manach, C. and Remesy, C. 2002 . Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine Pharmacotherapy 56(6):276-282.
53. Shahrzad, S. and Bitsch, I. 1996. Determination of some pharmacologically active phenolic acids in juices by high-performance liquid chromatography. Journal of Chromatography A 741:223-231.
54. Takeda, H., Tsuji, M., Inazu, M., Egashira, T. and Matsumiya, T. 2002. Rosmarinic acid and caffeic acid produce antidepressive-like effect in the forced swimming test in mice. European Journal of Pharmacology 449(3):261-267.
55. Ueda, H., Yamazaki, C. and Tamazaki, M. 2002. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biological & Pharmaceutical Bulletin 25(9):1197-1202.
56. Wang, H., Provan, G. J. and Helliewll K. 2004. Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chemistry 87:307-311.
57. Wen, D., Li, C., Di, H., Liao, Y. and Liu, H. 2005. A universal HPLC method for the determination phenolic acids in compound herbal medicines. Journal of Agricultural and Food Chemistry 53:6624-6629.
58. Yu, J., Vasanthan, T. and Temelli, F. 2001. Analysis of phenolic acids in barley by high-performance liquid chromatography. Journal of Agricultural Food Chemistry 49(9), 4352-4358.
59. Zenk, M., Etschenberg, E. and Graf, E. 1982. Use of rosmarinic acid in the treatment of inflammations and pharmaceutical products used therein. United States Patent 4329361.
60. Ziaková, A. and Brandšteterová, E. 2003. Validation of HPLC determination of phenolic acids present in some Lamiaceae family plants. Journal of Liquid Chromatography & Related Technologies 26(3):443-453.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林偉(2002)。二十一世紀之Business Management--六個標準差。品質月刊,38(3),87-90。
2. 林建基(2004)。6 Sigma的進化。品質月刊,40(3),53-56。
3. 李新鄉(2003)。新興的企業組織理論及其對教育行政之可能性影響。教師之友,44(2),17-21。
4. 李弘暉、吳瓊治(2003)。以Six Sigma組織文化打造競爭優勢---美商摩托羅拉公司之個案分析,品質月刊,39(3),73-77。
5. 李仁德(1996)。學校總務工作之未來與趨勢。師說,89,5-9。
6. 朱慧德(2005)。六標準差與六標準差設計。品質月刊,41(3),74-78
7. 王如哲(1999)。外國教育改革與政策啟示。理論與政策,50,57-84。
8. 林錫鴻(2005)。六標準差專案選取方式及與品管圈整合模式探討。品質月刊,41(7),180-208。
9. 邱宗永、莊清華(2003)。企業推展6 Sigma之十五項成功關鍵。品質月刊,39(1),23-25。
10. 高福成(2003)。TQM與Six Sigma世紀之爭。品質月刊,39(12),56-58。
11. 張志明、劉淑娟(2000)。知識管理在學校行政的應用:以總務處營繕工程為例。學校行政,71-81。
12. 張明輝(2002)。企業管理理論在學校經營與管理的應用。教師天地,41,10-12。
13. 陳賢舜(2005)。六標準差管理及其對教育行政管理之啟示。中華人文社會學報,2,180-208。
14. 陳麗妃(譯)(2003)。狩野紀昭著。六標準差的獨到之處與TQM的比較。品質月刊,39,67-73。
15. 粘孝堉、李分明、曾倫崇(2003)。六標準差觀念導入學校經營策略之研究,品質月刊,39(12),60-64。