跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/04 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳澄漳
研究生(外文):Cheng-Chang Chen
論文名稱:麵筋強度與蒸炊火力對台灣式饅頭品質之影響
論文名稱(外文):Taiwanese Style Steamed Bread Quality as Influenced by the Gluten Strength and Steam Generation Rate
指導教授:張基郁張基郁引用關係張永和張永和引用關係
指導教授(外文):Chi-Yue ChangYung-Ho Chang
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系碩士在職專班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:121
中文關鍵詞:台式饅頭皺縮蒸炊火力麵糰筋性麵筋含量
外文關鍵詞:Taiwanese style steamed breadShrinkingSteam generation rateGluten strengthGluten content
相關次數:
  • 被引用被引用:12
  • 點閱點閱:3426
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

本研究旨在探討麵粉的性質及蒸炊火力對於低糖量的台灣式饅頭品質的影響,期望藉以釐清:(1)麵粉中的麵筋含量及其筋性強度與饅頭品質的關係;(2)於發酵倍率相同之下,發酵時間以麵糰溫度予以調控,而測得麵糰筋性強度因發酵時間不同所產生的變化,及此一變化對饅頭品質之影響;(3)不同之蒸炊火力對於筋性不同的麵糰所製得的饅頭品質之影響。因此,擇定三種規格截然不同的麵粉,其蛋白質含量分別為13.23、11.60及7.73%;麵糰的醒發特性也具明確差異,其R/E比值分別為10.96、5.37及2.62;再分別以不同的麵糰溫度製作饅頭使其發酵時間約為15、30及60分三種,先測得其蒸炊前的麵筋強度變化,再分別以大、中、小的蒸炊火力蒸製這些具不同筋性強度的饅頭胚。
研究結果得知,蒸炊火力對饅頭品質具有重大影響,因為蛋白質含量高且筋性強的高筋麵粉在適當火力(中火力)蒸炊下,所製成的饅頭非但外觀及內部組織皆良好,其26℃之胚所製饅頭的質地測試,內聚性為0.56優於中筋的0.54及低筋的0.43;感官品評的咬勁也明顯優於中、低筋粉所製作者。當以大火力蒸炊時,中、高筋粉所製饅頭都會有離火皺縮的現象產生;中筋麵粉為中等的蛋白質含量,且筋性也適中,是被設計為最適宜饅頭製作之麵粉,但以大火蒸炊時仍會做出有皺縮的饅頭,只是其收縮率略小於高筋粉製作者;而相同的大火力,使用於低筋粉的饅頭製作,則不會產生皺縮,甚而表皮平滑度勝於以中小火力蒸炊者。
大火力會導致皺縮,但以小火力蒸炊卻也無法蒸出令人滿意的饅頭,非但體積小、組織及口感差、且有明顯的黏牙現象;三種麵粉皆然。
當饅頭麵糰發酵後,其筋性會有所改變,醒發性質測試的抗延性(resistance to extension, R)會降低,延展性(extensibility, E)會增加;但當麵糰溫度降低時,R及E值都會增加,而因麵溫之降低導致發酵時間之必然延長,使發酵完成時R值與中高溫之麵糰接近,E值卻明顯增加許多,使得代表麵筋強度的R/E比值有顯著差異,依序為高溫>中溫>低溫,這些差異對於饅頭之質地確有些微影響;但若同一粉種,給予不同麵溫,而有不同之鬆弛時間,再以同一火力蒸炊,所得之產品在感官品評時卻難分軒輊。亦即蒸炊火力之調控,足以抵銷或弱化麵糰筋性強度之差異。
本研究中筋性最弱的低筋麵粉,於饅頭製作時,可隨意使用蒸炊火力而不易發生皺縮;然而,即使以大火蒸炊,其質地仍明顯遜於來自中筋及高筋粉的產品,且其黏牙性在任一製作條件都會明顯存在,這應是低筋麵粉始終不被使用於台灣式饅頭之製作的主因。
一般認為麵粉的蛋白質含量高或筋性強是饅頭良好品質的限制因子,本研究結果顯示,蒸炊火力之調控應該也是饅頭品質良莠的重要關鍵之一。
關鍵字:台式饅頭、皺縮、蒸炊火力、麵糰筋性、麵筋含量
Abstract

The purpose of this study is to elucidate the effects of flour properties and steam generation rate on the quality of Taiwanese style steamed bread. Three points are expected to be clarified, first of all, the relationship between the protein content (gluten strength) of flour and the quality of steamed bread. Secondly, with the same extent of fermentation, the change of gluten strength due to different fermentation times and the resulting influence on the quality of steamed bread. Thirdly, the effects of gluten strength and steam generation rate on the quality of steamed bread. This study used three flours with various protein contents (13.23,11.60 and 7.73%, respectively ) and obviously different extensograph properties ( ratios of resistance-to- extension ( R ) value to extensibility (E), so called R/E value, are 10.96 、 5.37 and 2.62, respectively ). Different temperatures were used to prepare steamed bread dough which resulting in various fermentation times (15, 30, and 60 minutes) and dough with different extents of gluten strength before steaming. Steamed breads were prepared by using different steam generation rates to steam the fermented dough.
Results showed that the steam generation rate had great influence on the quality of steamed bread prepared. The steamed bread prepared from the high protein content flour(strong gluten strength) steaming by middle steam generation rate, not only had good exterior appearance and internal texture, but also had better textural properties determined by textural profile analysis ( TPA ) and cohesiveness determined by sensory evaluation than those of the steamed breads prepared from middle or low protein content flours. Fermented dough preparing from high or middle protein content flours and steaming by high steam generation rate produced steamed bread with shrinking phenomenon as removing from steamer. Generally, flour with middle protein content is considered suitable for preparing steamed bread due to its proper gluten strength. However, as the fermented dough preparing from the middle protein content flour was steamed by the high steam generation rate,shrinking of steamed bread occurred. On the other hand, shrinking phenomenon did not occurred on the steamed bread preparing from low protein content flour and steaming by high steam generation rate. Moreover, its exterior appearance was smoother than steamed breads steaming by low and middle steam generation rates. This indicates that the high steam generation rate results in the shrinking of steamed bread. Nevertheless, in spite of the flour used, low steam generation rate produces steamed breads with small volume, poor textural and chewiness properties, and obvious extent of stickiness to teeth.
The gluten strength of dough changed after fermenting, the R value decreased and the E value increased. However, when the temperature used for dough fermentation decreasing, both R and E values increased. Since the decreasing of temperature resulted in the increasing time of fermentation, the R value of fermented dough preparing at high or middle temperature was similar, while the E value increased obviously. Consequently, the R/E ratio showed significantly different among dough prepared at various temperature, and was in the order of high temperature > middle temperature > low temperature. The differences did cause more or less impacts to the texture of steamed bread. However, steamed breads preparing from the same kind of flour at different fermentation temperatures, accordingly different relaxation times, with the same steam generation rate showed comparable scores in sensory evaluation. This result indicates that controlling the steam generation rate can compensate or reduce the effect of gluten strength.
Shrinking phenomenon did not occurred in the steamed bread preparing from flour with low protein content ( weak gluten strength ), even steaming by high steam generation rate. However, the textural property of the steam bread was worse than prepared from middle and high protein content flours. Moreover, the steamed bread preparing from low protein content flour with any preparing conditions showed high extent of stickiness-to-teeth. This should be the reason that the low protein content flour is not used to produce Taiwanese style steamed bread industrially.

It is generally considered that high protein content and strong gluten strength are the limited factors to get the good quality of steamed bread, however, results of this study show that the steam generation rate is also one of the critical factors in preparing steamed bread.

Key Words: Taiwanese style steamed bread; Shrinking; Steam generation rate; Gluten strength; Gluten content.
目錄

封面內頁
簽名頁
授權書…………………………………………………………….. iii
中文摘要………………………………………………………….. iv
英文摘要………………………………………………………….. vi
誌謝……………………………………………………………….. ix
目錄……………………………………………………………….. xi
圖目錄…………………………………………………………….. xvi
表目錄…………………………………………………………….. xviii

1. 緒言 ……………………………………………………………...1
2. 文獻回顧 ………………………………………………………...4
2.1 饅頭之分類 ……………………………………………….....4
2.1.1 饅頭之定義 …………………………………………….....4
2.1.2 中國北方式饅頭 ……………………………………….....4
2.1.3 中國南方式饅頭 ……………………………………….....5
2.1.4 台灣式饅頭 …………………………………………….....6
2.2 影響饅頭品質之因素……………………………………......7
2.2.1 主原料與副原料………………………………………......7
2.2.1.1 麵粉……………………………………………………....8
2.2.1.2 加水量…………………………………………………....23
2.2.1.3 鹽………………………………………………………....23

2.2.1.4 糖………………………………………………………... 24
2.2.1.5 發粉……………………………………………………... 25
2.2.1.6 油脂…………………………………………………… ...25
2.2.1.7 酵母……………………………………………………... 25
2.2.2 製作方法及製作條件與饅頭品質的關係……………..... 27
2.2.2.1 饅頭之製作方法………………………………………... 27
2.2.2.2 不同整形方式對饅頭品質的影響……………………... 28
2.2.2.3 麵糰溫度與發酵速率及麵筋鬆弛之關係……………... 29
2.2.2.4 發酵與麵筋鬆弛之關係………………………………... 31
2.2.2.5 發酵麵糰之麵筋強度測試方法………………………... 33
2.2.2.6 饅頭之蒸炊時間……………………………………......34
2.3 饅頭品質之評估標準……………………………………..... 34
3. 材料與方法……………………………………………………... 36
3.1 使用材料…………………………………………………..... 36
3.1.1 麵粉……………………………………………………..... 36
3.1.2 酵母……………………………………………………..... 36
3.1.3 油脂……………………………………………………..... 36
3.1.4 糖………………………………………………………..... 36
3.2 使用設備…………………………………………………..... 36
3.2.1 麵糰攪拌機……………………………………………..... 36
3.2.2 麵糰壓麵機……………………………………………..... 37
3.2.3 發酵箱…………………………………………………..... 37
3.2.4 電熱蒸氣產生鍋………………………………………..... 37
3.2.5 蒸箱……………………………………………………..... 37
3.3 實驗方法………………………………………………….. ...37
3.3.1 麵粉理化性質分析……………………………………..... 40
3.3.1.1 水分…………………………………………………..... 40
3.3.1.2 粗蛋白質……………………………………………..... 40
3.3.1.3 灰分…………………………………………………..... 41
3.3.1.4 色度…………………………………………………..... 41
3.3.1.5 麵糰攪拌性質分析…………………………………..... 42
3.3.1.6 麵糰醒發性質分析…………………………………..... 43
3.3.2 饅頭製作………………………………………………..... 45
3.3.2.1 饅頭製作配方………………………………………..... 45
3.3.2.2 製作程序……………………………………………..... 45
3.3.3 饅頭胚之麵糰筋性測定………………………………..... 46
3.3.3.1 試樣製備……………………………………………..... 46
3.3.3.2 發酵前之麵糰筋性測定……………………………..... 47
3.3.3.3 發酵完成蒸炊前之麵糰筋性測定…………………..... 47
3.3.3.4 SMS TA.XT2/Kieffer Rig之拉伸測試使用條件
設定……………………………………………………. ..47
3.3.4 蒸炊火力調控…………………………………………..... 49
3.3.5 饅頭之品質測定………………………………………... ..49
3.3.5.1 外觀與對稱性………………………………………… ...49
3.3.5.2 比體積之測量………………………………………… ...50
3.3.5.3 色澤之測定……………………………………………... 50
3.3.5.4 饅頭組織質地之測定…………………………………... 51
3.3.5.5 感官品評……………………………………………… ...53
3.4 統計分析…………………………………………………..... 54
4. 結果與討論……………………………………………………... 55
4.1 使用麵粉之理化性質……………………………………..... 55
4.1.1 麵粉之基本成分………………………………………..... 55
4.1.2 麵粉之物理性質………………………………………..... 58
4.1.2.1 不同性質麵粉的麵糰攪拌性質………………………... 58
4.1.2.2 不同性質麵粉的麵糰醒發性質………………………... 60
4.2 饅頭胚之麵筋強度………………………………………..... 62
4.2.1 整形後發酵前之饅頭胚麵筋強度……………………..... 62
4.2.2 發酵完成時的饅頭胚麵筋強度………………………..... 66
4.2.3 麵糰溫度對發酵及麵筋鬆弛的影響…………………..... 68
4.3 麵糰筋性及蒸炊火力對饅頭品質的影響………………..... 74
4.3.1 麵糰筋性與饅頭體積…………………………………..... 74
4.3.2 蒸炊火力與饅頭體積…………………………………..... 77
4.3.3 麵筋強度與饅頭外型…………………………………..... 80
4.3.4 麵糰溫度對饅頭外型的影響…………………………..... 82
4.3.5 蒸炊火力與饅頭外型…………………………………..... 84
4.3.6 麵筋性質與饅頭的色澤………………………………..... 88
4.3.7 蒸炊火力與饅頭的色澤………………………………..... 90
4.3.8 麵筋強度對饅頭組織質地的影響……………………..... 96
4.3.9 蒸炊火力對饅頭組織質地的影響……………………..... 99
4.3.9.1 蒸炊火力對饅頭硬度值之影響……………………… ...99
4.3.9.2 蒸炊火力對饅頭壓縮回復力之影響…………………... 99
4.3.9.3 蒸炊火力對饅頭彈性值之影響……………………… ...102
4.3.9.4 蒸炊火力對饅頭內聚性之影響………………………... 104
4.4 感官品評…………………………………………………...106
4.5 麵粉蛋白質含量及麵糰溫度與饅頭胚之麵筋強度及
饅頭之內聚性之相關性分析 ………………………….. 112
5. 結論 …………………………………………………………... 114
參考文獻 ……………………………………………………….... 116
圖 目 錄

圖2.1 麵糰攪拌性質分析圖形 ………………………………… 12
圖2.2 麵糰醒發性質分析圖形 ………………………………… 15
圖2.3 美國小麥分類 …………………………………………… 18
圖2.4 各種不同等級麵粉的關係圖 …………………………… 21
圖2.5 不同水溫及粉溫之Farinogram…………………………. 30
圖3.1 本研究實驗流程圖 …………………………………….....39
圖3.2 SMS TA.XT2/kieffer Rig的麵糰拉伸曲線圖………… 48
圖3.3 質地分析曲線圖形……………………………………...... 52
圖4.1 不同麵糰溫度對其R/E值之影響……………………...... 69
圖4.2 不同麵糰溫度對其A × R/E值之影響 ………………... 71
圖4.3 麵糰溫度對不同筋性麵粉之麵糰發酵前後之A×R/E
值的比值影響..…………………………………………... 73
圖4.4 麵糰筋性及蒸炊火力對饅頭比體積之影響..…………... 78
圖4.5 麵糰筋性及溫度對饅頭比體積之影響………………..... 79
圖4.6 麵糰溫度對饅頭高度尺寸增加值之影響……………..... 83
圖4.7 大、中蒸炊火力蒸炊的高、中筋饅頭表面照片……..... 86
圖4.8 中筋中溫小火蒸炊之饅頭表面及側面照片…………..... 87
圖4.9 中、高筋、不同火力蒸炊之饅頭外觀照片…………...... 91
圖4.10 蒸炊火力對饅頭表皮色澤b值之影響…………………... 93
圖4.11 相同麵糰溫度及蒸炊火力下麵粉筋性對饅頭內聚性
之影響……………………………………………………... 97
圖4.12 蒸炊火力對饅頭硬度之影響…………………………...... 100
圖4.13蒸炊火力對饅頭壓縮回復力之影響 …………………….... 101
圖4.14蒸炊火力對饅頭彈性值之影響 ………………………….... 103
圖4.15蒸炊火力對饅頭內聚性之影響 ………………………….... 105
圖4.16蒸炊火力對饅頭的感官品評之黏牙性影響 …………….... 110
圖4.17蒸炊火力對饅頭的感官品評之咬勁影響 ……………….... 111

表 目 錄

表2.1 不同蛋白質及澱粉含量對饅頭品質的影響 …………… 10
表2.2 不同品種小麥的特性 …………………………………… 19
表2.3 台灣之中國國家標準麵粉分類 ………………………… 22
表2.4 滴定管之水溫與粉溫對Farinograms值之影響………… 31
表4.1 麵粉之基本成分及色澤 ………………………………… 56
表4.2 麵粉之麵糰攪拌性質 …………………………………… 59
表4.3 麵粉之麵糰醒發性質 …………………………………… 61
表4.4 整形後發酵前之饅頭胚麵筋強度分析 ………………… 63
表4.5 發酵完成時之饅頭胚麵筋強度分析 …………………… 67
表4.6 麵糰筋性及溫度對饅頭重量體積與比體積之影響 …… 75
表4.7 麵糰筋性及溫度對饅頭擴展率及尺寸增加值之影響…...81
表4.8 饅頭尺寸增加值受麵糰筋性及蒸炊火力之影響情形…...85
表4.9 麵筋性質與饅頭內部色澤比較表 ……………………… 89
表4.10 麵糰筋性及蒸炊火力對饅頭表皮色澤之影響 ……….. 92
表4.11 麵糰筋性及蒸炊火力對饅頭內部色澤之影響 ……….. 95
表4.12 麵糰筋性及溫度對饅頭的組織質地之影響 ………….. 98
表4.13 麵糰溫度對中筋麵粉於中火力下製備之饅頭感官品
評結果的影響 …………………………………………… 107
表4.14 不同麵糰筋性及蒸炊火力的饅頭之外觀和內部質地
感官品評結果 …………………………………………… 108
表4.15 麵粉蛋白質含量及麵糰溫度與饅頭胚之麵筋強度及
饅頭之內聚性之相關性分析 …………………………… 113
參 考 文 獻
1.王怡晶、吳景陽、黃正忠。1999。乾、濕酵母對麵糰產氣特性與饅頭產品物性之影響。中華民國食品科技學會第27次會員大會壁報論文展示。穀類加工組Ⅰ—1。食品工業技術研究所。新竹。
2.中國國家標準(CNS)「麵粉」。 總號:550,類號:N5007。2001。經濟部標準檢驗局。台北,台灣。
3.朱金鳳、張月櫻、徐華強。1992。專用麵粉及麵粉二次加工品質之研究。研究報告第24輯。中華穀類食品工業技術研究所。台北。
4.吳宗沛。1992。Farinograph與Extensograph的分析原理與二次加工利用。麵粉技術及品管研習(A)班資料彚編。中華穀類食品工業技術研究所。台北。
5.吳招親。2002。麵粉性質與饅頭品質相關性之研究:99。中國文化大學食品科學研究所碩士論文。台北,台灣。
6.周清源。1995。中國麵食文化的代表—饅頭、花捲、肉包與豆沙包。烘焙工業 59:21-25。
7.周清源。2004。中式麵點製作技術。中華穀類食品工業技術研究所 / 美國小麥協會。台北,台灣。
8.邵隆志。2006。研發工作過程中使用官能品評做品質評鑑之技術實務。台灣食品業經營管理實務教戰手冊-官能品評實務。第四章: 52-104。
9.徐華強、黃登訓、謝健一、顧德材。2003。實用麵包製作技術。
中華穀類食品工業技術研究所 / 美國小麥協會。台北,台灣。
10.黃登訓。1982。發酵麵食及饅頭製作原理。今日食品 11:5-8。
11.楊鵑華。1993。麵包專用粉之特性與種類。烘焙工業 47:54-57。
12.鄭美娟。1996。麵粉的吸水率、攪拌時間與麵糰性質的關係。烘焙工業 65:21-25。
13.陳俊江、張基郁。1994。麵粉化學成分與其物性指標之相關性研究。大葉學報 3(1):71—82。
14.盧淑生、朱金鳳、戴素月、陳麗如、陳賢哲、徐華強。1991。破損澱粉對麵製品品質之影響。中華穀類食品工業技術研究所研究報告第17輯。
15.盧榮錦。1992。麵粉的品質與分析方法:135。美國小麥協會。台北,台灣。
16.賴喜美。1996。烘焙原料的認識(7)-- 甜味劑。烘焙工業70:64-69。
17.Addo, K., Pomeranz, Y., Huang, M. L., Rubenthaler, G. L., and Jeffer, H.C. 1991. Steamed bread Ⅱ. Role of protein content and strength . Cereal Chem. 68(1):39-42.
18.American Association of Cereal Chemists, 2000 , Approved Methods of the A.A.C.C.,10th ed.,The Association St. Paul, MN. USA.
19.Bayfield, E. G., and Stone, C. D., 1960. Effects of absorption and temperature upon flour-water farinograms. Cereal Chem. 37: 233-240.
20.Bert, L. D., Appolonia and Wallace, H. Kunerth, 1984. Farinograph Handbook, 3rd, Am. Assoc. Cereal Chem., St. Paul, MN.
21.Bloksma, A. H., and Bushuk, W. 1988. Rheology and chemistry of dough. Pages 131-217 in Wheat: Chemistry and Technology, 3rd ed., Vol.Ⅱ, Y. Pomeranz (Ed). Am. Assoc. Cereal Chem., St. Paul, MN, USA.
22.Bloksma, A. H. 1990. Rheology of the breadmaking process. Cereal Foods World 35(2): 228-236.
23.Bohn, L. J., and Bailey, C. H. 1937. Effect of fermentation, certain dough ingredients, and proteases upon the physical properties of flour doughs.Cereal Chem. 14(4): 335-348.
24.Casutt, V., Preston, K. R., and Kilborn, R. H. 1984. Effects of fermentation time, inherent flour strength, and salt level on extensograph properties of full-formula remix-to-peak processed doughs. Cereal Chem. 61(5): 454-459.
25.Dempster, C. J., Hlynka,I., and Winkler, C. A. 1952. Quantitative extensograph studies of relaxation of internal stresses in non-fermenting bromated and unbromated doughs. Cereal Chem. 29(1): 39-53.
26.Dempster, C. J., Hlynka, I., and Anderson, J. A. 1953. Extensograph studies of structural relaxation in bromated and unbromated doughs mixed in nitrogen. Cereal Chem. 30(6): 492-503.
27.Dempster, C. J., Hlynka, I., and Anderson, J. A. 1955. Influence of temperature on structural relaxation in bromated and unbromated doughs mixed in nitrogen. Cereal Chem. 32(4): 241-254.
28.Evans, G. C., Deman, J. M., Rasper, V., and Voisey, P. W. 1974. An improved dough extensograph. J. Inst. Can. Sci. Technol. Aliment. 7(4): 263-268.
29.Faridi, H. A., and Rubenthaler, G. L. 1983. Laboratory method for producing Chinese steamed bread and effects of formula, steaming and storage on bread starch gelatinization and freshness. Pages 863-867 in Proc. Int. Wheat Genet. Symp., 6th, Kyoto, Japan.
30.Halton, P. 1949. Significance of load-extension tests in assessing the baking quality of wheat flour doughs. Cereal Chem. 26(1): 24-45.
31.Halton, P. 1959. Physical properties of wheat protein systems. Pages 12-25 in The Physico-chemical Properties of Proteins with Special Reference to Wheat Proteins, SCI Monogr. 6. Soc. Chem. Ind., London, UK.
32.Hlynka, I. 1955. Some observations on the “research” extensometer. J. Sci. Food Agric. 6(12): 763-767.
33.Hoseney, R. C., Hsu, K. H., and Junge, R. C. 1979. As imply spread test to Measure the rheological properties of fermenting dough. Cereal Chem. 56(3): 141-143.
34.Hoseney, R. C. 1986. Principles of Cereal Science and Technology. Am. Assoc. Cereal Chem., St. Paul, MN, USA.
35.Hou, L., Zemetra, R. S., and Birzer, D. 1991. Wheat genotype and environment effects on Chinese steamed bread quality. Crop Sci. 31(5): 1279-1282.
36.Huang, S. D. and Miskelly, D. M. 1991. Steamed bread - a popular food in China. Food Australia 43(8): 346-351.
37.Huang, S. and Moss, R. 1991. Light microscopy observations on the mechanism of dough development in Chinese steamed bread production. Food Structure 10(4): 289-293.
38.Huang, S., Bekter, S., Quail, K., and Moss, R. 1993. An optimized processing procedure by response surface methodology (RSM) for northern-style Chinese steamed bread. J. Cereal Sci. 18(1): 89-102.
39.Huang, S., Quail, K., Moss, R., and Best, J. 1995. Objective methods for the quality assessment of northern-style Chinese steamed bread. J. Cereal Sci. 21(1): 49-55.
40.Kruger, J. E., Morgan, B., Preston, K. R., and Matsuo, R. R. 1992. Evaluation of some characteristics of Chinese steamed buns prepared from Canadian wheat flours. Can. J. Plant Sci. 72(2): 369-375.
41.Lin, Z. J., Miskelly, D. M., and Moss, H. J. 1990. Suitability of various Australian wheats for Chinese-style steamed bread. J. Sci. Food Agric. 53(2): 203-213.
42.Lukow, O. M., Zhang, H., and Czarnecki, E. 1990. Milling, rheological, and end-use quality of Chinese and Canadian spring wheat cultivars. Cereal Chem. 67(2): 170-176.
43.McMaster, C. J., and Moss, H. J. 1989. Flour quality requirements of staple foods of Asia and the Middle East. Pages 547-553 in Wheat End-use Properties: Wheat and Flour Characterization for Specific End-uses Proceedings, H. Salovaara (Ed). ICC, Vienna, Austria.
44.Minolta Chroma Meter CR-310 Instruction Manual. 1991. Minolta Camera Co., Tokyo, Japan.
45.Preston, K. R., Matsuo, R. R., Dexter, J. E., Tweed, A. R., Kilborn, R. H., and Tully, D. 1986. The suitability of various Canadian wheat for steamed bread and noodle processing for the People’s Republic of China. Can. Inst. Food Sci. Technol. J. 19(3): 114-120.
46.Rasper, V. F., and Preston K.R. 1991. The Extensograph Handbook. Am. Assoc. Cereal Chem., St. Paul, MN, USA.
47.Rubenthaler, G. L., Huang, M. L., and Pomeranz, Y. 1990. Steamed bread. I. Chinese steamed bread formulation and interactions. Cereal Chem. 67(5): 471-475.
48.Rubenthaler, G. L., Y. Pomeranz, and M. L.Huang. 1992. Steamed bread. Ⅳ. Negative steamer-spring of strong flours. Cereal Chem. 69(3): 334-337.
49.Shuey, W. C. 1984. Physical factors influencing Farinograms. Pages 24-30 in The Farinograph Hand Book, 3rd ed., Chapter Ⅳ. Am. Assoc. Cereal Chem., St. Paul, MN, USA.
50.Singh, N. K., Donovan, G. R. and MacRitchie, F. 1990. Use of sonication and size-exclusion high-performance liquid chromatography in the study of wheat flour proteins. Ⅱ. Relative quantity of glutenin as a measure of breadmaking quality. Cereal Chem. 67(2): 161-170.
51.Smewing, J. 1995. The measurement of dough and gluten extensibility using the SMS/Kieffer Rig and the TA.XT2 Texture analyzer. Stable Micro Systems Ltd., Vienna Court, Godalming, U.K.
52.U.S. Wheat Associates and Wheat Marketing Center. 2005. Asian Products Collaborative Study: Taiwan Steamed Bread and Noodle team.
53.Yue, P. and Rayas-Duarte, P. 1997. An overview of steamed bread. Cereal Foods World 42(4): 210-215.
54.Zhu, J., Huang, S. Khan K. and O’Brien, L. 2001. Relationship of protein quantity, quality and dough properties with Chinese steaned bread quality. J. Cereal Sci. 33(2): 205-212.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top