跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉國輝
研究生(外文):Kuo-Hui Yeh
論文名稱:催化劑電漿前處理對熱化學氣相沉積奈米碳管表面型態與場發射特性之影響
論文名稱(外文):Effects of Catalyst Plasma Pre-Treatment on Surface Morphology and Field Emission Characteristics of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition
指導教授:李世鴻李世鴻引用關係
指導教授(外文):Shih-Fong Lee
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:86
中文關鍵詞:奈米碳管場發射熱化學氣相沉積
外文關鍵詞:rbon nanotubes (CNTs)field emissionthermal chemical vapor deposition (thermal CVD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用四氟化碳(CF4)及氮氣(N2)兩種氣體之電漿分別對鎳薄膜催化劑進行電漿前處理,以研究其對於所成長奈米碳管的表面形態及場發射特性之影響。本研究的奈米碳管是利用熱化學氣相沉積(thermal chemical vapor deposition)法來成長的。甲烷(CH4)氣體是主要的碳原子來源,而氬氣(Ar)則作為載氣使用。甲烷被觸媒熱分解來獲得碳原子,並從而成長出奈米碳管。我們使用拉曼光譜(Raman spectroscopy)、電子顯微鏡(SEM)、能量散佈分析儀(EDS)來分析經過電漿處理後的奈米碳管特性。從實驗數據得知,隨著電漿前處理時間的增大,所成長出的奈米碳管管徑會變小及碳管數目會變多,因而增強了奈米碳管的場發射特性。另外,從場發射的分析,經過CF4電漿處理4分鐘所成長的奈米碳管的場發射電流會達到1.67mA/cm2,而經過N2電漿處理4分鐘後場發射電流只有0.908 mA/cm 2。因此,使用CF4氣體電漿前處理會比N2氣體電漿前處理對奈米碳管場發射特性會有更顯著的增強效果。
In this work, tetrafluoromethane (CF4) and nitrogen (N2) plasma pre-treatments were carried out on the catalyst nickel films in order to study their effects on the surface morphology and field emission characteristics of the synthesized carbon nanotubes (CNTs). Carbon nanotubes were synthesized with a thermal chemical vapor deposition system. Methane (CH4) was the main source for carbon, and argon was used as the carrier gas. CNTs were synthesized from carbon atoms obtained from catalytic thermal decomposition of methane. Raman spectroscopy, scanning electron microscope (SEM), and energy dispersive spectrometer (EDS) were employed to study the properties of synthesized CNTs after plasma treatment. From our experimental data, it is found that as the plasma pretreatment duration was increased, the diameter of CNTs became smaller and the surface density of CNTs became higher, and their field emission characteristics were thus enhanced. We can see that after 4 minutes of CF4 plasma pretreatment, the emission current density of CNTs reached 1.67mA/cm2, but after 4 minutes of N2 plasma pretreatment, the emission current density was only 0.908mA/cm2. Therefore, it is evident that CF4 plasma pretreatment can have a more pronounced enhancement on the emission characteristics of CNTs than N2 plasma pretreatment can have.
Keywords : carbon nanotubes (CNTs), field emission, thermal chemical vapor deposition (thermal CVD)
目 錄

封面內頁
簽名頁
授權書.........................iii
中文摘要........................iv
英文摘要......................v
誌謝..........................vi
目錄........................vii
圖目錄.........................x
表目錄.........................xiv

第一章 簡介.......................1
1.1. 奈米碳管的歷史與簡介...............1
1.2. 奈米碳管的特性..................4
1.3. 奈米碳管的應用..................7
1.4. 研究動機.....................8
第二章 催化劑電漿前處理文獻回顧.............11
2.1. 氨氣對催化劑電漿前處理文獻............13
第三章 理論與研究方法..................17
3.1. 電子場發射理論..................17
3.2. 奈米碳管的成長機制................20
3.2.1. 奈米碳管主要成長機制.............20
3.2.2. 催化劑在奈米碳管成長中扮演的角色.......22
3.2.3. 奈米碳管成長模式分類.............25
3.3. 奈米碳管的製程方法................27
3.4. 電漿蝕刻機制...................34
3.5. 實驗儀器與實驗步驟................35
3.5.1. 實驗流程...................35
3.5.2. 熱蒸鍍系統.................36
3.5.3. 熱化學氣相沉積系統..............37
3.5.4. 電漿蝕刻系統................39
3.5.5. 掃描式電子顯微鏡系統.............41
3.5.6. 能量散佈分析儀系統..............42
3.5.7. 拉曼光譜儀系統................44
3.5.8. 場發射量測裝置系統..............46
第四章 實驗結果與討論..................48
4.1. 不同時間CF4電漿前處理對奈米碳管成長之影響....48
4.1.1. SEM(掃瞄式電子顯微鏡)的分析.........48
4.1.2. Raman(拉曼光譜)分析.............52
4.1.3. EDS(能量散佈分析儀)的分析..........55
4.1.4. 電子場發射特性分析..............56
4.2. 不同時間N2電漿前處理對奈米碳管成長之影響....60
4.2.1. SEM(掃瞄式電子顯微鏡)的分析.........60
4.2.2. Raman(拉曼光譜)分析.............64
4.2.3. EDS(能量散佈分析儀)的分析..........66
4.2.4. 電子場發射特性分析..............67
4.3. 不同電漿前處理對奈米碳管的研究與討論.......71
4.3.1. 不同電漿前處理SEM表面結構比較.......71
4.3.2. 不同電漿前處理拉曼比較............72
4.3.3. 不同電漿前處理EDS比較..........73
4.3.4. 不同電漿前處理場發射特性比較.........74
第五章 結論.......................76
參考文獻........................78


















圖目錄

圖1-1、Iijima以弧光放電法製得之奈米碳管.........1
圖1-2、(a) CNT與(b)汽相成長碳纖維 ...........3
圖1-3、碳的各種結構(a)石墨、(b)鑽石、(c)C60、(d)奈米碳管..3
圖1-4、弧光放電法合成之單層奈米碳( SWNT )SEM微結構照片3
圖1-5、單層CNT的分類(a) zigzag、(b) arm-chair、(c) chiral..6
圖1-6、單層CNT的分類方法 ...............6
圖1-7、二維片狀石墨的結構圖...............6
圖2-1、SEM上視表面型態圖,圖(a)(b)催化劑鎳薄膜厚度30 Å,圖(c)(d)奈米碳管上視圖(成長時間30分鐘,成長溫度550℃),圖(a)(c)為經氨氣功率30瓦前處理,圖(b)(d)為經氨氣功率90瓦前處理...............14
圖2-2、奈米碳管SEM架構圖,先經4分鐘氨氣前處理,再經NH3+C2H2處理10分鐘,最後經過C2H2處理時間(a)0分鐘(b)1分鐘(c)3分鐘(d)5分鐘(e)9分鐘.......17
圖3-1、(a) 金屬-真空能帶示意圖-未加電場 (b)金屬-真空能帶示意圖-外加高電場.................20
圖3-2、CNT成長機制示意圖( C是碳氫化合物氣體分解後的碳源 ) .....................21
圖3-3、碳與鎳鍵結能圖(一) ... ..... ......24
圖3-4、碳與鎳鍵結能圖(二) ..............24
圖3-5、碳與鎳鍵結能圖(三) ..............24
圖3-6、碳經由催化劑表面擴散示意圖. ..........26
圖3-7、底部成長模式及頂部成長模式示意圖. .......26
圖3-8、(a)弧光放電方法示意圖、(b)弧光放電法設備示意圖,在弧光(arc)中藉由碳離子與電子交換的過程來成長CNT.....................28
圖3-9、(a)雷射剝蝕製程設備圖、(b)雷射剝蝕法儀器示意圖 .28
圖3-10、碳氫化合物氣相熱分解法.............30
圖3-11、燈絲熱裂解化學氣相沉積法............32
圖3-12、利用多孔矽基板以thermal-CVD成長具方向性的排列CNT.....................32
圖3-13、電漿處理蝕刻機制................33
圖3-14、電阻式蒸鍍系統.................36
圖3-15、高溫氧化爐管 (簡圖) ..............37
圖3-16、電漿蝕刻示意圖.................39
圖3-17、電漿蝕刻系統..................39
圖3-18、掃描式電子顯微鏡...............41
圖3-19、三度共焦拉曼顯微鏡( Nanofinder 30 ),中興大學奈米中心 .....................45
圖3-20、場發射量測示意圖... ............46
圖3-21、場發射量測示意圖,圖(a)~(F)說明於內文中.....46
圖4-1、鎳基板的上視影像圖:(a)未經過CF4電漿前處理,(b) 經過CF4電漿前處理1分鐘,(c) 經過CF4電漿前處理2分鐘,(d) 經過CF4電漿前處理3分鐘,(e) 經過CF4電漿前處理4分鐘,(f) 經過CF4電漿前處理5分鐘...49
圖4-2、奈米碳管的上視影像圖:(a)未經過CF4電漿前處理,(b) 經過CF4電漿前處理1分鐘,(c) 經過CF4電漿前處理2分鐘,(d) 經過CF4電漿前處理3分鐘,(e) 經過CF4電漿前處理4分鐘,(f) 經過CF4電漿前處理5分鐘。放大倍數為100000倍.................51
圖4-3、CF4電漿前處理0分鐘至5分鐘奈米碳管平均管徑之關係......................52
圖4-4、鎳膜經過CF4電漿前處理0分鐘至5分鐘拉曼光譜圖.54
圖4-5、鎳膜經過CF4電漿前處理0分鐘至5分鐘所成長奈米碳管之材料元素百分比分佈圖............55
圖4-6、鎳膜經過CF4電漿前處理0分鐘至5分鐘後所成長奈米碳管之電流密度與施加電場之間的關係圖......57
圖4-7、鎳膜經過CF4電漿處理0分鐘至5分鐘後所成長奈米碳管之場發射Fowler-Nordheim (FN)圖.........60
圖4-8、鎳基板的上視SEM圖:(a)未經過N2電漿前處理,(b) 經過1分鐘電漿前處理,(c) 經過2分鐘電漿前處理,(d) 經過3分鐘電漿前處理,(e) 經過4分鐘電漿前處理,(f) 過5分鐘電漿前處理 ...............61
圖4-9、奈米碳管上視影像圖:(a)未經過N2電漿前處理,(b) 經過1分鐘N2電漿前處理,(c) 經過2分鐘N2電漿前處理,(d)經過3分鐘N2電漿前處理,(e) 經過4分鐘N2電漿處理,(f) 經過5分鐘N2電漿前處理........62
圖4-10 鎳膜經過N2電漿前處理0分鐘至5分鐘所成長奈米碳管之平均管徑關係圖 ................64
圖4-11、鎳膜經過N2電漿前處理0分鐘至5分鐘後所成長奈米碳管之拉曼光譜圖................65
圖4-12、鎳膜經過N2電漿前處理0分鐘至5分鐘所成長奈米碳管之材料元素百分比分佈圖............67
圖4-13、鎳膜經過N2電漿前處理0分鐘至5分鐘所成長奈米碳管之場發射電流密度與施加電場之(J-E)曲線圖. ...69
圖4-14、鎳膜經過N2電漿前處理0分鐘至5分鐘後所成長奈米碳管之場發射Fowler-Nordheim (FN)圖........70
圖4-15、奈米碳管的上視影像圖:(a)未經過CF4電漿前處理,(b) 經過CF4電漿前處理4分鐘,(c) 經過N2電漿前處理4分鐘。放大倍數100000倍.............71
圖4-16、鎳膜經過CF4與N2電漿前處理,所成長奈米碳管之電流密度比較圖..................74


表目錄

表1-1、CNT原子排列之結構及性質............5
表4-1、鎳膜經過CF4電漿處理時間之0分鐘至5分鐘所成長奈米碳管之D帶的強度(ID)與G帶的強度( IG )之拉曼光譜比值關係表........................54
表4-2、鎳膜經過CF4電漿處理0分鐘至5分鐘所成長奈米碳管之材料元素百分比..................56
表4-3、鎳膜經過CF4電漿處理0分鐘至5分鐘後所成長奈米碳管之場發射Fowler-Nordheim圖所計算出的斜率及場發射因子........................59
表4-4、鎳膜經過N2電漿前處理時間之0分鐘至5分鐘後所成長奈米碳管之D帶的強度(ID)與G帶的強度(IG)之拉曼光譜比值關係表 .......................65
表4-5、鎳膜經過N2電漿前處理0分鐘至5分鐘所成長奈米碳管之材料元素百分比..................66
表4-6、鎳膜經過N2電漿前處理0分鐘至5分鐘所成長奈米碳管之場發射Fowler-Nordheim圖所計算出的斜率及場發射因子........................69
表4-7、鎳膜經過CF4與N2電漿前處理0分鐘至5分鐘所成長奈米碳管之D帶的強度(ID)與G帶的強度(IG)之拉曼光譜比值關係表.......................72
表4-8、鎳膜經過CF4與N2電漿前處理0分鐘至5分鐘所成長奈米碳管之材料元素百分比...............73
1.Kroto, H. W., Heath, J. R., O’Brian, S. C., Curl, R. F., & Smalley, R. E.(1985). C60: Buckminsterfullerene. Nature, Vol. 318 (6042), pp. 162-163.
2.Kratschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: A new form of carbon. Nature, Vol. 347, pp. 354-358.
3.Maiti, Brabec, C. J., Roland, C., & Bernholc, J. (1995). Theory of carbon nanotube growth. Phys. Rev. B, Nov 15; Vol. 52(20), pp. 14850-14858.
4.Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, Vol. 354, Nov. 7, pp. 56-58.
5.Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, Vol. 363, pp. 603-605.
6.Bethune, D. S., Kiang, C. H., deVries, M. S., Gorman, G., Saroy, R., Vazguez, J., & Beyers, R. (1993). Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, Vol. 363, pp. 605-607.
7.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., & Smalley, R. E. (1996). Crystalline ropes of metallic carbon nanotubes. Science, Vol. 273, pp. 483-487.
8.Dresselhaus, M. S., Dresselhaus, G., & Saito, R. (1995). Physics of carbon nanotubes. Carbon, Vol. 33, pp. 883-891.
9.Peter J. F. Harris, (1999). Carbon Nanotubes and Related Structure. Cambridge University Press, Chapter 4.2: Electronic properties of nanotube. pp. 16–54.
10.Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C. (1996) Fullerenes and Carbon Nanotubes, Academic,San Diego.
11.Charlier, J. C., & Issi, J. P. (1998). Electronic structure and quantum transport in carbon nanotubes. Applied Physics A: Materials Science & Processing, Vol. 67, pp. 79-87.
12.Haus, M. D., Dresselhaus, G., Eklund, P., & Saito, R. (1998). Carbon nanotubes. Physics World, Vol. 11, pp. 33-38.
13.Mintmire, J. W. & White, C. T. (1998). First-principles band structures of armchair nanotubes. Applied Physics A: Materials Science & Processing, Vol. 67, pp. 65-69.
14.K. Tohji, T. Goto, H. Takahashi, Y. Shinoda, N. Shimizu,B. Jeyadevan, I. Matsuoka, Y. Saito, A. Kasuya, T. Ohsuna, K. Hiraga, Y. Nishina, J. (1997) Phys. Chem. Vol.101, pp. 1974.
15.S. Bandow, A.M. Rao, K.A. Williams, A. Thess, R.E. Smalley,P.C. Eklund, J. (1997)Phys. Chem. B Vol.101 pp. 8839.
16.E. Dujardin, T.W. Ebbesen, A. Krishnan, M.M.J. Treacy, Adv.Mater. 10 (1998) pp. 1472.
17.A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, (1998) Appl. Phys. A Vol 67 pp.29.
18.K.B. Shelmov, R.O. Esenaliev, A.G. Rinzler, C.B. Huffman,R.E. Smalley, (1998)Chem. Phys. Lett. Vol 282 pp. 429.
19.A.C. Dillon, T. Gennett, K.M. Jones, J.L. Alleman, P.A. Parilla, M.J. Heben, Adv. Mater. 11 (1999) , pp.1354.
20.Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, (1999)Solid State Commun. 112 , pp.35.
21.I.W. Chiang, B.E. Brinson, R.E. Smalley, J.E. Margrave, R.H. Hauge, J. (2001)Phys. Chem. B 105, pp.1157.
22.J.M. Moon, K.H. An, Y.H. Lee, Y.S. Park, D.J. Bae, G.S. Park, J. (2001)Phys. Chem. B 105, pp.5677.
23.S. Niyogi, H. Hu, M.A. Hamon, P. Bhowmik, B. Zhao, S.M. Rozenzhak, J. Chen, M.E. Itkis, M.S. Meier, R.C. Haddon, J. Am. Chem. Soc. 123 (2001) , pp.733.
24.A.R. Harutyunyan, B.K. Pradhan, J.P. Chang, G.G. Chen, P.C. Eklund, J. Phys. Chem. B 106 (2002) , pp.8671.
25.M.T. Martı´nez, M.A. Callejas, A.M. Benito, W.K. Maser, M. Cochet, J.M. Andre´s, J. Schreiber, O. Chauvet, J.L.G. Fierro, Chem. Commun. (2002); , pp.1000.
26.E. Va´zquez, V. Georgakilas, M. Prato, Chem. Commun. 2002; 230 Jo, S. H., Y. Tu, Z. P. Huang, D. L. Carnahan, D.Z. Wang and Z. F. Ren (2003) Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Applied Physics Letters, 82(20), , pp.3520-3522.
27.Shelimov, K.B.; Esenaliev, R.O.; Rinzler, A.G.; Huffman, C. B.; Smalley, R.E. Chem. Phys. Lett., 282, (1998)429.
28.Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima. Solid State Communications, Vol.112, (1999) , pp.35-37.
29..Duesberg, G.S.; Burghard, M.; Muster, J.; Philipp, J.; Roth, S. Chem. Commun., 1998, (1998) , pp.435.
30.S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang, Z. F. Ren, Appl. Phys. Lett. 82 (2003) 3520.
31.Z. L. Wang, R. P. Gao, W.A. de Heer, P. Poncharal, Appl. Phys. Lett. 80 (2002) 856.
32.J. M. Bonard, K. A. Dean, B. F. Coll, C. Klinke, Phys. Rev. Lett. 89 (2002) 197602.
33.H. Folwer and L. Nordheim , (1928) Proc. R. Soc. London, Ser A, Vol.119, pp.683
34.P.G. Collins and A.Zettl, (1997) Phys. Rev. B 55, pp.9391
35.S. Han and J. Ihm, Phys. Rev. B, Vol.66, 241402 (2002); Changwook Kim, Bongsoo Kim, Seung Mi Lee, Chulsu Jo and Young Hee Lee, Phys. Rev. B, Vol.65, pp.418,
36.L. Nilsson, O. Groening, C. Emmenegger, et al., Appl. Phys. Lett. 79 (2001) 1534.
37.Z.P. Huang, D.Z. Wang, J.G. Wen, M. Sennett, H. Gibson, Z.F. Ren, Appl. Phys. A: Mater. Sci. Process 74 (2002) 387.
38.K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, et al., Appl. Phys. Lett. 79 (2001) 1534.
39.Z.F. Ren, Z.P. Huang, D.Z. Wang, et al., Appl. Phys. Lett. 75 (1999) 1086.
40.H. Murakami, M. Hirakawa, C. Tananka, H. Yamakawa, Appl. Phys. Lett. 76 (2000) 1776.
41.Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren, Appl. Phys. Lett. 80 (2002) 4018.
42.Z.F. Ren, Z.P. Huang, J.W. Xu, P.N. Provencio, Science 282 (1998) 1105.
43.C.J. Lee, J. Park, S.Y. Kang, J.H. Lee, Chem. Phys. Lett. 323 (2000) 554.155
44.M. Jung, K.Y. Eun, J.-K. Lee, Y.-J. Baik, K.-R. Lee and J.W.
45.Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegel, et al., Science 282 (1998) 1105.
46.C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, et al., Chem. Phys. Lett. 312 (1999) 461.
47.M. Jung, K.Y. Eun, J.K. Lee, Y.T. Baik, K.R. Lee, J.W. Park, al., Science 273 (1996) 483.
48.K.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, D.J. Kim, J. Eur. Ceram. Soc.21 (2001) 2095.
49.G.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, K.H. Son, D.J. Kima, J. Appl. Phys. 91 (2002) 3847.
50.M. Jung, K.Y. Eun, Y.J. Baik, K.R. Lee, J.K. Shin, S.T. Kim, Thin Solid Films 398–399 (2001) 150.
51.C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, et al., Chem. Phys. Lett. 312 (1999) 461.
52.Jon g Hyung Choi , Tae Young Lee , Sun Hong Choi , Jae-Hee Han , Ji-Beom Yoo, Chong-Yun Park , Taewon Jung , Se Gi Yu , Whikun Yi , In-Taek Han , J.M. Kim. “Control of carbon nanotubes density through Ni nanoparticle formation using thermal and NH3 plasma treatment”, Diamond and Related Materials 12 (2003) 794–798
53.Jae-Hee Han , Chong Hyun Lee , Duk-Young Jung , Chul-Woong Yang , Ji-Beom Yoo *, Chong Yun Park , Ha Jin Kim , SeGi Yu , Whikun Yi , Gyeong Su Park , I.T. Han , N.S. Lee , J.M. Kim. “NH3 effect on the growth of carbon nanotubes on glass substrate in plasma enhanced chemical vapor deposition” Thin Solid Films 409 (2002) 120–125
54.Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., & Hayshi, T. (1993). Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chemical Physics Letters, Vol. 204, pp. 277-282.
55.Dai, H., Rinzer, A. G., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1996). Single-wall nanotubes produces by mental catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett., Vol. 260, pp. 471-475.
56.Lee, Y. H., Kim, S. G., & Tománek, D. (1997). Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys. Rev. Lett., Vol. 78, pp. 2393-2396.
57.Endo, M., & Kroto, H. W. (1992). Formation of carbon nanofibers. Journal of Physical Chemistry, Vol. 96, pp. 6491-6944.
58.Baker, R. T. K., & Harries, P. S. (1978). The formation of filamentous carbon. Chemistry and Physics of Carbon, New York: Marcel Deckker, Vol. 14, pp. 83-165.
59.Baker, R. T. K., Braker, M. A., Harries, P. S., Feates, F. S., & Waite, R. J. (1972). Nucleation and growth of carbon deposits from nickel catalyzed decomposition of acetylene. Journal of Catalysis, Vol. 26, pp. 51-62.
60.Oberlin, A., Ento, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, Vol. 32, pp. 335-349.
61.Baird, T., & Fryer, J. R. (1974). Carbon formation on iron and. nickel foils by hydrocarbon pyrolysis reactions at 700°C. Carbon, Vol. 12, pp. 591-602.
62.Oberlin, A., Ento, M., & Koyama, T. (1976). High resolution electron microscope observations of graphitized carbon fibers. Carbon, Vol. 14, pp. 133-157.
63.Journet, C. et al., (1998). Production of carbon nanotubes. Applied Physics, Vol.67, pp. 1-9.
64.Alan, M. et al., (1998). Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., Vol. 292, pp. 567-574.
65.Yacaman, M. J., Yoshida, M. M., Rendon, L., & Santiesteban, J. G. (1993). Catalytic growth of carbon. microtubules with fullerene structure. Appl. Phys. Lett., Vol. 62, pp. 202-204.
66.Baker, R. T. K., & Chludzinski, J. J. (1980). Filamentous carbon growth on nickel–iron surfaces—effect of various oxide additives. Journal of Catalysis, Vol. 64, pp. 464-478.
67.Baker, R. T. K., Harries, P. S., Thomas, R. B., & Waite, R. J. (1973). Formation of filamen-tous carbon from iron and chromium catalyzed decomposition of acetylene. Journal of Catalysis, Vol. 30, pp. 86-95.
68.Baker, R. T. K., & Waite, R. J. (1975). Formation of carbonaceous deposit from the platinum-iron catalyzed decomposition. Journal of Catalysis, Vol. 37, pp. 101-105.
69.Jung, M., Eun, K. Y., Lee, J. K., Baik, Y. J., Lee, K. R., & Park, J. W. (2001). Growth of carbon nanotubes by chemical vapor deposition. Diamond and Related Materials, Vol. 10, pp.1235-1240.
70.Xie, S., Li, W., Pan, Z., Chang, B., & Sun, L. (2000). Self-assembly of shape-controlled nanocrystals and their in-situ thermodynamic properties. Materials Science and Engineering A, Vol. 286, pp. 11-15.
71.Chen, X. H., Feng, S. Q., Ding, Y., Peng, J. C., & Chen, Z. Z. (1999). The formation conditions of carbon nanotubes array based on FeNi alloy island films. Thin Solid Films, Vol. 339, pp. 6-9.
72.Lee, C. J., Park, J., Kang, S. Y., & Lee, J. H. (2000). Growth of well-aligned carbon nanotubes on a large area of Co-Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition. Chemical Physics Letters, Vol. 323, pp. 554-559.
73.Terrones, M. et al., (1998). Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chemical Physics Letters, Vol. 285, pp. 299-305.
74.Liang, Q., Li, Q., Chen, D. L., Zhou, D. R., Zhang, B. L., & Yu, Z. L. (2000). Carbon nanotube prepared in the atmosphere of partial oxidation of methane. Chemical Journal of Chinese Universities-Chineses, Vol. 21(4), pp. 623-625.
75.Hernadi, K., Fonseca, A., Nagy, J. B., Siska, A., & Kiricsi, I. (2000). Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Applied Catalysis A: General, Vol. 199, pp. 245-255.
76.Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., & Wang, G. (1996). Large-scale synthesis of aligned carbon nanotubes. Science, Vol. 274, pp. 1701-1703.
77.Pan, Z. W., Xie, S. S., Chang, B. H., Sun, L. F., Zhou, W. Y., & Wang, G. (1999). Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chemical Physics Letters, Vol. 299, pp. 97-102.
78.Li, A. P., Muller, F., Birner, A., Nielsch, K., & Gosele, U. (1998). Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., Vol. 84, pp. 6023-6026.
79.Masuda, H., Yamada, H., Satoh, M., & Asoh, H. (1997). Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett., Vol. 71, pp. 2770-2772.
80.Masuda, H., & Satoh, M. (1996). Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys., part 2, Vol. 35, L. 126-129.
81.Nolan, P. E., Schabel, M. J., & Lynch, D. C. (1995). Hydrogen control of carbon deposit morphology. Carbon, Vol. 33, pp. 79-85.
82.Pinheiro, P., Schouler, M. C., Gadelle, P., Mermoux, M., & Dooryhee, E. (2000). Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts. Carbon, Vol. 38(10), pp. 1469-1479.
83.Khassin, A. A., Yurieva, T. M., Zaikovskii, V. I., & Parmon, V. N. (1998). Effect of metallic cobalt particles size on occurrence of CO disproportionation. Role of fluidized metallic cobalt-carbon solution in carbon nanotube formation. Reaction Kinetic and Catalysis Letter, Vol. 64, pp. 63-71.
84.Tsai, S. H., Chao, C. W., Lee, C. L., & Shin, H. C. (1999). Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis. Appl. Phys. Lett., Vol. 74, pp. 3462-3464.
85.Huang, Z. P., Xu, J. W., Ren, Z. F., Wang, J. H., Siegal, M. P., & Provencio, P. N. (1998). Growth of highly-oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett., Vol. 73, pp. 3845-3847.
86.Ren, Z. F., Huang, Z. P., Wang, D. Z., Wen, J. G., Xu, J. W., Wang, J. H., Calvet, L. E., Chen, J., Klemic, J. F., & Reed, M. A. (1999). Growth of a Single Freestanding Multiwall Carbon Nanotube on Each Nanonickel Dot. Appl. Phys. Lett., Vol. 75, pp. 1086-1088.
87.Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., & Dai, H. (1999). Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science, Vol. 283, pp. 512-514.
88.Kwon, Y. K., Lee, Y. H., Kim, S. G., Jund, P., Tománek, D., & Smalley, R. E. (1997). Morphology and Stability of Growing Multiwall Carbon Nanotubes. Phys. Rev. Lett., Vol. 79, pp. 2065-2068.
89.Oh, D. H., & Lee, Y. H. (1998). Stability and cap formation mechanism of single-walled carbon nanotubes. Phys. Rev. B, Vol. 58, pp. 7407-7411.
90.Kuznetsov, V. L., Usoltseva, A. N., Chuvilin, A. L., Obraztsova, E. D. & Bonard, J. M. (2001). Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes. Phys. Rev. B, Vol. 64, pp. 235401-1.
91.Lieberman, M. A., and A. J. Lichtenberg, “Principles of plasma discharges and materials processing,” John Wiley & Sons Inc., 1994.
92.Xiao, H. (2001). “Introduction to semiconductor manufacturing technology,” Prentice Hall Inc..
93.A. Maiti. C.J. Brabec and J.Bernholc:Phys. Rev. B 55 (1997) R6097
94.Jacoby, S. L. S., Kowalik, J. S., & Pizzo, J. T. (1972). Iterative methods for nonlinear optimization problems. Prentice Hall, Inc., Englewood Cliffs, New Jersey, ISBN 0–13–.508199–X, 79-83.
95.Fowler, R. H., & Nordheim, L. W. (1928). Electron emission in intense electric fields. Proceedings of Royal Society of London, 119, 173-181.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文